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SHORT SUMMARY 

This work considers the synthesis of coherent and distinguishable round trips from existing travel 
demand data (OD-matrices) in order to enable person-level mobility simulations with agent-based 
simulations such as MATSim (Horni et al., 2016). Five distinct population groups are considered 
and the spatial distribution of their home locations over the study region is reconstructed. Also, 
the spatial distribution of work locations is reproduced. The round trips are equipped with a plau-
sible temporal structure by reproducing activity durations and departure times derived from a 
household travel survey. The Metropolis-Hastings (Hastings, 1970) algorithm is used to sample 
from a probability distribution defined based on input data drawn from an upstream four-step 
travel demand model. The method is applied to the city of Vienna, resulting in the generation of 
a population of 50,000 representative round trip makers. 
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1. INTRODUCTION 

Agent-based models are widely used to simulate the behaviour of individuals, their interactions 
with each other and the surrounding transport system (Department for Transport, 2024). With 
regard to policy evaluation, agent-based models outperform traditional four-step models (To-
zluoglu, 2024). Due to their disaggregated nature, they are sensitive for a much wider range of 
policy measures (Rasouli & Timmermans, 2014). To perform reliable simulations with agent-
based models, an accurate representation of the traveller population is required. This comprises a 
correct representation of socioeconomic and sociodemographic aspects of the population, as well 
as those aspects of individual-level travel behaviour that are endogenous to the agent-based model 
(Müller & Axhausen, 2010; Pougala, 2024). 

Population synthesis 

The most frequently used approach for synthesising a population of agents is iterative proportional 
fitting (IPF). It is used to disaggregate data from the population level to the individual-level by 
adjusting the rows and columns of a multi-dimensional matrix until the marginal sums match the 
aggregate data. The matrix’s dimension reflects the number of reproduced attributes, along each 
dimension the possible values of each attribute occur, and the number of cells is equal to the 
number of distinct individual groups with a certain attribute-value combination (Ramadan & Sisi-
opiku, 2020). Information on the correlation between different attributes at the population level 
needs to be derived from microdata and then scaled up to the population level (Choupani & 
Mamdoohi, 2016). Despite its widespread use, there are three major limitations of IPF: The inte-
ger conversion problem, the zero cell problem, and the disadvantage of either synthesising a 
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population at the individual or household-level, but not both simultaneously (Choupani & 
Mamdoohi, 2016). 
Simulation-based population synthesis uses Markov chain Monte Carlo (MCMC) methods to 
sample a synthetic population from a previously defined probability distribution. Farooq et al. 
(2013) propose this approach to overcome some of the drawbacks of IPF. One of their main ad-
vantages is that they truly synthesize population rather than just cloning it from microdata (Farooq 
et al., 2013; Ramadan & Sisiopiku, 2020). The approach used within this work also utilises a 
MCMC method and therefore falls in the wider field of simulation-based population synthesis. 

Travel demand synthesis 

For travel demand synthesis, the two predominant approaches are trip-based and activity-based 
models (Bastarianto et al., 2023). Trip-based models are closely related to the four-step models 
and capture travel in terms of numbers of independent trips. In contrast, activity-based models do 
not focus on individual trips but on the activities conducted in between and derive travel from the 
need to participate in these activities. This leads to more sensitive models that are capable of 
evaluating transport policies (Tozluoglu, 2024). 
ALBATROSS is a prominent example of an activity-based model. The built-in scheduling engine 
includes a decision tree with 27 steps and models decision-making processes in a hierarchical 
manner including location choice, departure time choice, activity duration and mode choice (Ra-
souli & Timmermans, 2014). 
The FEATHERS framework is based on the scheduling engine of ALBATROSS. It is a dynamic 
activity-based model that incorporates rescheduling, learning effects and traffic routing based on 
a previously existing trip-based model (Bellemans et al., 2010).  

Joint synthesis of population and travel demand 

Both population synthesis and travel demand generation are necessary to enable agent-based sim-
ulations at the network assignment level. It hence is useful to combine them in one model. This 
tends to be realized in the form of “demand generation pipelines” that concatenate several popu-
lation construction steps and travel behavioural models (Hörl & Balac, 2021). 
Hörl & Balac (2021) describe one such pipeline. They use direct sampling to synthesise the pop-
ulation from sociodemographic data, then attach supplementary socioeconomic information to 
the agents. Statistical matching is used to assign activity chains to each individual. Subsequently, 
primary and secondary activity locations are sampled from different data sources (Hörl & Balac, 
2021). 
Mallig et al. (2013) present MobiTopp, a further example of combining population and travel 
demand synthesis. It uses a modular approach comprising many different sub-models, some of 
which rely on utility maximisation principles (Mallig et al., 2013). 
Although the described pipelines produce results of convincing quality, there are drawbacks. Due 
to their complexity, the effect of assumptions made is hard to trace. The concatenation of many 
sub-models promotes error propagation (Farooq et al., 2013). Their sequential character does not 
allow to adjust assumptions of previously performed modelling steps, rendering the model sensi-
tive to the order in which modelling steps are pipelined (Pougala, 2024). Since population syn-
thesis is a highly underspecified problem, the ability of pipelines to reproduce a given dataset 
lacks (model-based) indication of why the synthesized population is better than any other of the 
same data reproduction quality. The order, number, and type of algorithms used can vary widely 
between different approaches, making it difficult to compare and validate results (Hörl & Balac, 
2021). 
In order to address the problems identified above, this work propose a method which overcomes 
the sequential nature of population synthesis pipelines by using the Metropolis-Hastings (Has-
tings, 1970) algorithm to impute all relevant travel behavioural aspects of a given synthetic 
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population simultaneously. It decouples model specification (in the form of target weights at-
tached to travel behavioural aspects) and demand synthesis (sampling according to these weights). 
The approach rests on interpretable parameters, is easy to overview and replicate, does not assume 
any particular ordering of sub-models and hence reduces possible error propagation. The case 
study presented here focuses on the individual-level travel demand synthesis for a given synthetic 
population, even though the approach has clear potential for performing both simultaneously 
(Rupprecht, 2024). 

2. METHODOLOGY 

The individual-level travel demand of a given synthetic population is represented in the form of 
a list of round-trips. Each round trip reflects the daily travel schedule of an agent, comprising a 
sequence of activity locations and the associated departure times. This round-trip list constitutes 
the state of the Metropolis-Hastings algorithm. At each iteration, the algorithm samples a varia-
tion of this list and accepts or rejects this proposal based on the model-informed weights specified 
below. 
A Bayesian approach is adopted to define the probability distribution of round trips. A behaviour-
ally uninformed prior in the form of a maximum entropy distribution over all possible round trips 
with a given expected number of travel episodes is chosen. Given aggregate data sources, meas-
urement equations are then defined which yield a likelihood function that, when multiplied into 
the prior distribution, gives the desired posterior distribution. The following error functions are 
used in the measurement model: 
 

𝐸𝐸(𝑥𝑥) = |𝑡𝑡 − 𝑠𝑠(𝑥𝑥)|     (1) 
 
where 𝑡𝑡 is a target value, such as the number of trips in one origin-destination (OD) relation or 
the number of agents exhibiting a particular travel time pattern, and 𝑠𝑠(𝑥𝑥) extracts the correspond-
ingly simulated value from the round trip list 𝑥𝑥. From each such error function, unnormalized 
likelihood term 
 

𝑏𝑏(𝑥𝑥) = 𝑒𝑒−𝜇𝜇∙𝐸𝐸(𝑥𝑥)     (2) 
 
is derived. It is not larger than 1, and a higher deviation between the sample and the target will 
lead to a lower likelihood of that sample. When reproducing several data sets simultaneously the 
different error functions can be weighed against each other using the scaling factor 𝜇𝜇. The most 
sophisticated model presented here comprises 11 error functions that are outlined in the following. 
Flötteröd (2025) provides a detailed specification of the sampling machinery used here. 
 

3. RESULTS AND DISCUSSION 

The method was applied to the city of Vienna. 250 Travel Analysis Zones (TAZ) of an existing 
PTV Visum model (PTV Planung Transport Verkehr GmbH, 2022) were considered. A temporal 
resolution of 24 time bins was chosen and the expected number of locations visited during one 
round trip was set to 2.8 (according to Österrreich Unterwegs; Bundesministerium für Verkehr, 
Innovation und Technologie, 2016) in the uniformed prior distribution. Figure 1 (left) shows the 
proportions of round trips of different lengths when only using the prior distribution sampling. 
The mean trip length is 2.9, which apart from random noise coincides with the expected value of 
the maximum entropy prior distribution. Figure 1 (centre and right) shows that round trips are 
uniformly distributed in space and time. Up to this point, no real data beyond the mean trip length 
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is reproduced. By doing so, the model is gradually pushed in a more behaviourally meaningful 
direction. 
 

   
Figure 1: Shares of RT visiting 1,2,3, and 4 locations in the uninformed model (left); Departures 
over time in the uninformed model (centre); Departures over locations in the uninformed model 
(right) 
 
A likelihood term representing a 24h OD-matrix is added. The error function compares each OD 
flow of the target OD-matrix with the corresponding OD flow of the sample OD-matrix (obtained 
by aggregating all time-dependent round trips into one 24h-OD-matrix). The scatter plot in Figure 
2 (left) indicates that the algorithm achieves proportionality between sample and target, and shows 
a good quality of reproduction. Figure 2 (right) reveals the effect of OD reproduction on the dis-
tribution of round trip lengths. The algorithm generates a smaller proportion of round trips with a 
higher number of visited locations, lowering the mean trip length to 2.6. This phenomenon may 
be attributed to the fact that the combinatorial problem (sampling a list of round trips that recon-
structs the target OD-matrix) becomes easier to solve for the algorithm by using shorter round 
trips. When removing round trips that visit only one location (traveller stays at home location) 
from the sample, the proportions match with the target data. 
 

 
Figure 2: Quality of OD reproduction in the OD reproduction model (left); Shares of RT visiting 1,2,3, and 
4 locations in the OD reproduction model (right) 

 
In a subsequent modelling stage, five different population groups are defined, and the number of 
people of each group living in each TAZ is specified. Separately, for each population group an 
error function compares the number of home locations per zone in the sample with the target data 
to ensure correct reproduction of the spatial distribution of the home locations. Additionally, the 
number of work locations per TAZ is specified. It is stated that all members of the two working 
population groups spend their longest out of home activity at such a location. For each working 
population group another error function ensures correct reproduction of the spatial distribution of 
work locations. Figure 3 (left) shows good reproduction quality of the spatial distribution of home 
locations of population group 6 whereas figure 3 (right) shows the same for work locations of 
population group 8. All other population groups reach the same level of reproduction quality. 
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Figure 3: Quality of home location reproduction of population group 6 in the OD and location reproduction 
model (left); Quality of work location reproduction of population group 8 in the OD and location repro-
duction model (right) 

 
In the final stage plausible time structure is added to the model. Therefore, a two-dimensional 
matrix holding the number of persons allocated to all possible combinations of the duration spent 
at their home location (number of consecutive hours) and the hourly time bin of the departure 
from the home location is derived from Österreich Unterwegs (Bundesministerium für Verkehr, 
Innovation und Technologie, 2016). By adding a further error function correct reproduction of 
this data is ensured. Another matrix of the same kind was derived for work durations and depar-
tures from work locations of working population groups. By again adding an error function this 
data is being reproduced. Figure 4 shows near perfect reproduction quality of both duration-de-
parture matrices. Figure 5 shows the effect of adding the reproduction of the home respectively 
work duration-departure matrix on the time structure of the model. 
 

  
Figure 4: Quality of the home duration-departure matrix reproduction in the OD, location and time structure 
reproduction model (left); Quality of the work duration-departure matrix reproduction in the OD, location 
and time structure reproduction model (right) 

 

 
Figure 5: Departures per hour in the OD, location and time structure reproduction model with 
only the duration-departure matrix for home activities being reproduced (left); Departures per 
hour in the OD, location and time structure reproduction model with the duration-departure ma-
trix for home and work activities being reproduced (right) 
 
Figure 6 shows how the logarithmic sampling weights over iterations evolve with increasing 
complexity of the model. In the OD reproduction model the curve indicates stationarity of the 
algorithm after about 1 million iterations (Figure 6 left). In the OD and location reproduction 
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model this takes about 3.5 million iterations (Figure 6 centre). The most complex model here 
does not yet indicate stationarity (Figure 6 right). Previous experiments have shown that dou-
bling the number of iterations is enough to observe convergence. 
 

  
Figure 6: Logarithmic plot of the sampling weight for OD reproduction over iterations in the OD reproduc-
tion model (left); Logarithmic plot of the sum over all sampling weight over iterations in the OD and loca-
tion reproduction model (centre); Logarithmic plot of the sum over all sampling weight over iterations in 
the OD, location and time structure reproduction model (right) 

 

4. CONCLUSION 

The proposed method is well suited for the unbiased disaggregation of aggregate travel demand 
data for agent-based simulation. The presented results correspond plausibly to the underlying 
modelling assumptions. The data reproduction quality is satisfactory, even when different datasets 
(targets) are reproduced at the same time. 
The main limitation of the presented approach is its runtime requirement. The results presented 
here involve 4 million iterations of the algorithm. The experiment ran about 3.5 days on a 3.0 
GHz AMD EPYC 7302 CPU single-threaded. Ongoing work hence focuses on speeding up the 
algorithm. The sequential nature of the Metropolis-Hastings algorithm hinders the straightforward 
deployment of multithreading techniques however great run time improvements are possible. 
Calderhead (2014) alleviate the computational bottleneck of MCMC methods by generating mul-
tiple proposals in parallel and then sample from a finite-state Markov chain constructed upon 
them to ensure matching with the target distribution. By incorporating all proposals (not just ac-
ceptable ones) in the estimation process during the sampling the statistical efficiency increases 
(faster movement within the state space; Calderhead, 2014). Since the number of possible rejec-
tions grows with the number of proposal processes run in parallel, it is especially useful to com-
bine a paralleled proposal generation with an improved estimation process (Austad, 2007). The 
implementation of these techniques achieves run time reductions up to two orders of magnitude 
(Calderhead, 2014), which seems very promising for the further development of Metropolis-Hast-
ing based synthesis of round trips as an alternative to less transparent pipeline approaches. 
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