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Short summary

This paper introduces CARLA (spacially Constrained Anchor-based Recursive Location Assign-
ment), a recursive algorithm for assigning secondary (or any) activity locations in activity-based
travel models. CARLA minimizes distance deviations while integrating location potentials, en-
suring more realistic activity distributions. The algorithm decomposes trip chains into smaller
subsegments, using geometric constraints and configurable heuristics to efficiently search the solu-
tion space.
Compared to a state-of-the-art relaxation-discretization approach, CARLA achieves significantly
lower mean deviations, even under limited runtimes. It is robust to real-world data inconsistencies,
such as infeasible distances, and can flexibly adapt to various priorities, such as emphasizing
location attractiveness or distance accuracy.
CARLA’s versatility and efficiency make it a valuable tool for improving the spatial accuracy of
activity-based travel models and agent-based transport simulations.
Our implementation is available at https://github.com/tnoud/carla.
Keywords: Activity-based model; agent-based; exhaustive search; location choice; relaxation–
discretization algorithm; synthetic population

1 Introduction

Activity-based models (ABMs) have emerged as a more behaviorally realistic alternative to tradi-
tional demand modeling paradigms, such as the four-step model (Rasouli & Timmermans, 2014;
Bastarianto et al., 2023; Rezvany et al., 2024). Their disaggregate representation enables ABMs to
better reflect individual decision-making processes and capture complex travel behavior patterns
(Rasouli & Timmermans, 2014). Thus, ABMs require modeling the attributes, intentions, and
interactions of each individual traveler (Hörl & Axhausen, 2023).
A key challenge is the difficulty of robustly predicting activity location choices (Miller, 2023).
Primary activities, such as commuting to work or attending educational institutions, can often
be modeled with relative accuracy, supported by structured data sources like commuter matrices
(Matet et al., 2024). Modeling the locations of secondary activities, including shopping, leisure, or
dining, presents a significantly greater challenge (Matet et al., 2024). These decisions are influenced
by several factors and exhibit variability, making them more complex to predict. Furthermore, the
lack of standardized approaches and datasets exacerbates the difficulty of accurately representing
these behaviors (Hörl & Axhausen, 2023).
Common methods for the location choice of activities within activity plans use space-time prisms
to define feasible activity locations, ensuring they are reachable within defined time or distant con-
straints (Salvadé et al., 2022). Another approach involves the use of mobile phone data, which can
be utilized to generate trip schedules for activity-based traffic simulations, enabling the estimation
of global spatial mobility behavior of a population (Cui et al., 2021; Matet et al., 2024).
Hörl & Axhausen (2023) introduced a data-driven algorithm for assigning secondary activity lo-
cations, ensuring consistency with fixed points in daily activity plans while maintaining realistic
distance distributions. This method eliminates the need for complex choice models and supplemen-
tary origin-destination data, providing a practical and user-friendly solution for secondary location
assignment. The algorithm has proven effective in various ABMs (Hörl & Balac, 2021; Hörl et
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Figure 1: A five-trip activity chain with some illustrated target locations.

al., 2021; Sallard et al., 2021; Pereira et al., 2022; Manout et al., 2024) and represents the current
state-of-the-art.
Although computationally efficient, the approach has potential for further improvement. The al-
gorithm iteratively selects a feasible option from the solution space to find a valid result, but it
does not guarantee the optimal solution. A more systematic optimization algorithm could reliably
achieve the best possible outcome. Additionally, the algorithm does not account for location poten-
tial, i.e. the prominence or attraction of a certain location. As a result, larger destinations, such
as shopping malls, are not selected more frequently than smaller shops, limiting the representation
of realistic activity patterns.
In this work, we present a new algorithm for assigning secondary activity locations, or any activity
chain, using Euclidean distances from a household travel survey (HTS). The algorithm utilizes
a recursive strategy to decompose activity chains into manageable segments and systematically
narrows the solution space using tailored heuristics and geometric constraints. It incorporates
location potentials, ensuring realistic assignments. Its flexibility allows it to adapt to various sce-
narios and priorities; for example, when location potentials are more important, the algorithm can
prioritize them while using distances solely to define the search space. Furthermore, the algorithm
is robust and capable of handling implausible distance inputs without significant degradation in
performance.

2 Methodology

Building on the conceptual framework established by Hörl & Axhausen (2023), we adopted a
similar terminology to describe the activity assignment problem. An activity chain represents a
sequence of activities performed by an individual, connected by trips, which denote the travel
between consecutive activities. Within an activity chain, illustrated in Figure 1, a main activity
(usually work or education) is placed using a different algorithm, leaving secondary activities to
be located. Activity chains are divided into segments: a segment is a sequence of trips with known
locations at its start and end and any number of activities with unknown locations in between.
For each segment bounded by two fixed locations S (start) and E (end), the goal was to assign n
variable activities A1, A2, . . . , An (e.g. sport, leisure...) to discrete target locations T1, T2, . . . , Tk

from a predefined set of locations in the study area (e.g. parks, businesses...), where the desired
activity type must fit the target location type. The problem can be divided into two cases:

1. Two-trip Case: This involves a single variable activity A located between the two fixed
points S and E. It is relatively straightforward to solve.

2. Complex case: This involves n ≥ 2 variable activities A1, A2, . . . , An distributed between
S and E. The solution space becomes extremely large and complex as n increases, creat-
ing a highly interdependent optimization problem. Each activity placement Tj affects the
subsequent trips.

The objective was to minimize the total discrepancy between the distances dHTS
ij reported in the

HTS and the distances dmodel
ij derived from the assigned locations. In order to incorporate location

potentials P (Tj) for the target candidate locations Tj into the optimization objective, a weighted
potential term was added:

Maximize α

k∑
j=1

P (Tj)− β

n+1∑
i=1

∣∣dHTS
i−1,i − dmodel

i−1,i

∣∣ (1)
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where dHTS
i−1,i represents the distance between consecutive activities as observed in the HTS, dmodel

i−1,i

represents the Euclidean distance between their assigned locations in the models, and α and β are
tunable parameters controlling the influence of potentials and deviations.

Core Idea

To address the optimization problem, we developed a recursive algorithm that simplifies the trip
chain step-by-step until a solution is found. The key idea is to divide a complex segment into two
smaller subsegments at a middle activity, the anchor, which is placed at a discrete, suitable location.
This splits the segment (S → E) into (S → Am) and (Am → E). The process is repeated for all
subsegments until all activities are assigned. A tree search evaluates multiple anchor placements
and subsegments simultaneously. Each branch is scored based on distance deviations and location
potentials, selecting the best solution. Geometric constraints narrow the search space, and selection
heuristics improve efficiency.

Key Components

1. Main Algorithm Loop
For each person, the algorithm processes each segment sequentially in the main loop. The results
for each segment are combined to form a complete, placed trip chain.

2. SolveSegment Function
The SolveSegment function (see Algorithm 1) is the core of the algorithm. It operates on the
given segment by selecting a number of possible anchor locations (candidates). Each chosen anchor
spawns two new subsegments, unique to this anchor location, which are solved recursively. The
algorithm proceeds until it reaches one of two base cases: (i) a trivial single-trip subsegment (where
no further activity placement is needed), or (ii) the Two-trip Case (where the best activity location
can be found directly). It returns the best identified segment placement.
In the Two-trip Case, ideal possible locations for A are at the intersections of the two circles:

• Centered at S with radius dS,A,

• Centered at E with radius dA,E .

If the input distances are infeasible (i.e., the circles do not intersect because they are too far apart
or one being fully enclosed within the other), the algorithm selects a single point that minimizes
total deviation.
After determining the ideal point(s), the best discrete location is chosen from the target locations.
This, however, is not necessarily the location closest to an ideal point. First, when location po-
tentials are taken into account, a location further from an ideal point but with a much larger
potential may be superior. Additionally, the Euclidean proximity to an ideal point is not directly
representative of the total distance deviation, shown in this example: Given an expected distance
of 1 unit from S and 6 units from E, the ideal points are found as illustrated in Figure 2. Moving
orthogonally to the illustrated ellipse from either ideal point has a stronger influence on the dis-
tances from S and E than moving tangentially to the ellipse by the same distance. The deviation
gradients around the ideal points do not form circular funnels, but a more complex shape.
Thus, instead of choosing the closest location to an ideal point, we select a number of candidates
around each ideal point, which are then evaluated (by the Evaluation Function) and the single
best candidate selected (by the Selection Function). The difference between choosing the closest
location and the "best" among several close locations is significant when optimizing for minimal
deviation.
In the Complex, recursive, Case, the ideal anchor location is highly dependent on both previous and
following trips, whose locations are yet undetermined. Using geometric constraints, the algorithm
restricts the search area to overlapping feasible regions (rings, Figure 3) around the start (S) and
end (E) points, defined by:

• Inner radius (rmin): the minimum allowable distance.

• Outer radius (rmax): the maximum allowable distance.

The maximum radii are the sum of all trip distances between S and the anchor (Am), and Am and
E, respectively. Minimum radii are calculated combinatorially as the shortest distance reachable
from S or E, considering trip lengths. For example, a very long trip followed by two short trips
may prevent returning to the reference point, making rmin the difference between the long trip

3



Algorithm 1 SolveSegment
Require: Segment seg, target locations T , configuration C
Ensure: Optimally placed segment ˆseg, score
1: if |seg| = 1 then ▷ Base case: single trip
2: return seg, 0
3: else if |seg| = 2 then ▷ Base case: two trips
4: candidates← CircleIntersections(seg[0].from, seg[1].to, T, C)
5: scores← EvaluationFunction(candidates)
6: selected_candidate, selected_score← SelectionFunction(candidates, scores, 1)
7: Update seg with selected_candidate
8: return seg, selected_score
9: else ▷ Recursive case: multiple trips

10: anchor← ChooseAnchor(seg, C)
11: D1min,D1max,D2min,D2max← GetFeasibleDistances(seg, anchor)
12: candidates← OverlappingRings(D1min,D1max,D2min,D2max, T,C)
13: scores← EvaluationFunction(candidates)
14: selected_candidates, selected_scores←
15: SelectionFunction(candidates, scores, C.number_of_branches)
16: branch_segments, branch_scores← []
17: for all c ∈ selected_candidates do
18: Update seg with candidate c at anchor
19: ˆseg1, score1 ← SolveSegment(seg[0 : anchor], T, C)
20: ˆseg2, score2 ← SolveSegment(seg[anchor + 1 :], T, C)
21: Combine ˆseg1 and ˆseg2 into ˆseg
22: ˆseg_score← score1 + score2 + score of candidate c
23: branch_segments.append( ˆseg)
24: branch_scores.append( ˆseg_score)
25: end for
26: best_index← argmax branch_scores
27: return branch_segments[best_index], branch_scores[best_index]
28: end if
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Figure 2: Total distance deviation of locations around the ideal points
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Figure 3: Feasible areas for the anchor location around Start and End

and the combined shorter trips. By constraining the search space to the overlap of these rings,
the algorithm ensures that the placement respects travel distance constraints while significantly
reducing computational effort.
Once the feasible region is determined, the function queries the spatial index for all locations
within it which fit the given activity type (candidates). If there are no candidate locations found,
this either implies that the rings do not overlap indicating an impossible trip chain (and may be
expected given the nature of HTS), or simply indicates that there are no acceptable target locations
in the overlap. In either case, the rings are expanded by shrinking the minimum and increasing
the maximum radii until a specified minimum number of valid location is found. The identified
candidates are then evaluated using the Evaluation Function and a subset of configurable size
is selected using the Selection Function, ensuring a balance between location potential and
distance deviations. The selected candidates then serve as inputs for the subsequent recursive
step.

3. Scoring and Selection
The Evaluation Function assigns a score to each candidate:

Score(c) = α · P (c)− β ·D(c) (2)

Here, α and β are weights that control the trade-off between location potential P (c) and the
distance deviation D(c). This formulation can be extended to include nonlinear terms if needed.
For the Two-trip Case, D(c) is defined as:

D(c) =
∣∣ d1 − ∥S − c∥2

∣∣ +
∣∣ d2 − ∥c− E∥2

∣∣. (3)

Here, d1 and d2 are the expected distances, while ∥S−c∥2 and ∥c−E∥2 are the Euclidean distances
between the points. In the one-trip case, this simplifies to a single term.
The final score of a whole chain is computed as the sum of scores for all selected locations in the
chain. By summing up the individual contributions of spatial potential and distance accuracy, this
resolves directly into the optimization function introduced earlier.
The Selection Function is responsible for selecting the best candidate locations based on their
scores as computed by the Evaluation Function. While selecting more candidates (and thus cre-
ating more branches) improves the quality of the results, it also significantly increases processing
times, particularly for long activity chains. To address this trade-off, the function supports sev-
eral configurable heuristic strategies, allowing the algorithm to balance exploration, diversity, and
computational efficiency. They are listed in Table 1.

3 Results and discussion

Comparing Hörl and CARLA: Trade-offs Between Performance and Accuracy

We evaluated the trade-off between runtime and accuracy for both Hörl and CARLA algorithms.
For Hörl, we varied the maximum number of iterations, while for CARLA, we varied the number
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Table 1: Selection Strategies Overview
Strategy Description
Keep All Selects all candidates, ensuring the optimal solution but

with high computational cost.
Top-k Retains the k highest-scoring candidates, effective but may

overlook interdependent solutions.
Monte Carlo Selects candidates probabilistically based on normalized

scores, introducing exploration and stochasticity.
Top-k Monte Carlo Combines deterministic (k top candidates) and probabilis-

tic sampling, balancing quality and diversity.
Spatial Downsampling Selects candidates evenly from a configurable grid of cells to

ensure distribution across the feasible region. Much faster
than the alternative of using k-means clustering.

Top-k Spatial Down-
sampling

A hybrid approach: selects k top candidates and applies
spatial downsampling for diversity.

of branches. Since Hörl minimizes distance deviations only, we simplified CARLA’s Evaluation
Function to:

Score(c) = −D(c) (4)

We profiled Hörl’s algorithm and found no evident bottlenecks in its implementation. The evalua-
tion used a sample of 1000 individuals from a German HTS, prefiltering persons with trips over 30
km as they exceeded the study area’s bounds. Target locations were real-world data from Hanover,
Germany, with activity types derived from OpenStreetMaps.
Hörl’s implementation uses a relaxation solver and an assignment solver, with the maximum num-
ber of iterations set to 1000 and 20, respectively. Deviation thresholds determine when the algo-
rithm returns. While they improve runtime, they limit the best achievable result. To evaluate
this, we tested two configurations: the standard setup and a testing setup with increased limits
and reduced thresholds, as shown in Table 2.

Table 2: Comparison of Hörl Standard and Hörl 1m1000 Configurations.

Parameter Hörl Standard Hörl 1m1000
Thresholds (Car driver/passenger, Public transport) 200 m 1 m
Thresholds (Walk, Bike) 100 m 1 m
AssignmentSolver Max Iterations Limited to 20 Limited to 1000

Evaluating CARLA’s perfomance, we applied a consistent base configuration (see Table 3).
Before using the relaxation solver, Hörl’s algorithm polls distances from a distribution, as its input
data lack direct distance values. In contrast, we directly input Euclidean distances, bypassing
this step. However, Hörl’s relaxation solver relies on feasible distances and performs poorly when

Table 3: Base CARLA Configuration.

Parameter Value
number_of_branches 50
min_candidates_complex_case 10
candidates_two_trip_case 20
anchor_strategy lower_middle
selection_strategy_complex_case mixed (Top-k Monte Carlo Sampling)
selection_strategy_two_trip_case top_k
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Figure 4: Mean deviation vs. runtime across scenarios, varying iterations for Hörl and
branches for CARLA. Each point in the plots represents a result of a distinct parameter
configuration of the respective algorithm.

handling infeasible ones. To address this, we tested two scenarios: one using the full HTS sample
and another excluding persons with infeasible data, leaving 693 individuals for analysis.
Both algorithms can either be applied to locate all activities of a activity chain or used only
between already assigned fixed main activities. Accordingly, we evaluated two additional scenarios:
one where the main activity is pre-placed at a fixed location, requiring only the segments before
and after the main activity to be placed, and another where the main activity is not pre-placed,
requiring the entire activity chain to be assigned. In sum, the four scenarios emerged:

1. Main activity pre-placed, considering only feasible trip chains.

2. Main activity pre-placed, considering all trip chains.

3. Main activity not placed, considering only feasible trip chains.

4. Main activity not placed, considering all trip chains.

The results in Figure 4 showcase the performance of both algorithms. CARLA consistently outper-
forms Hörl in all scenarios, achieving solutions with a mean deviation close to the likely optimum.
This is even the case at much shorter runtimes, with improvements observed as the number of
branches increased. With a low number of branches (20), CARLA’s results are not only better but
also significantly faster.

Detailed comparison

A single run from scenario three, which excludes infeasible chains to isolate the algorithms’ perfor-
mance, highlights the differences. Using its base settings (Table 3), CARLA completed processing
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Figure 5: Pairwise comparison of total distance deviation per person.

in 45 seconds, while Hörl’s standard configuration, with a maximum of 1000 iterations as per the
published standard, required 89 seconds.
CARLA produced better results in 630 cases (90.9%). In 62 cases (8.9%), results were equal,
indicating that both algorithms chose the same discrete locations. In a single case, Hörl found a
location chain with a smaller total deviation, reflecting the heuristic nature of CARLA’s settings
in this test.
The results are visualized in Figure 5. As 92.5% of total deviations produced by the Hörl algorithm
are below 600m, we focus on this area first. CARLA consistently manages to find total deviations
well below Hörl’s deviations, very often close to zero. The full range indicates that even for chains
where a placement close to the given distances is not possible (e.g. due to sparse target locations),
CARLA finds better results.

4 Conclusions

This paper presented CARLA, a novel recursive algorithm for assigning (secondary, or any) activ-
ity locations in activity-based travel models. CARLA optimizes for both location potential and
adherence to observed distance distributions while handling real-world complexities such as infea-
sible distances or sparse target locations. Compared to Hörl’s relaxation-discretization algorithm,
CARLA consistently achieved lower mean deviations, even under constrained runtimes. Its recur-
sive structure efficiently decomposes trip chains into manageable segments, leveraging geometric
constraints to reduce the solution space. Configurable evaluation and selection functions allow
CARLA to balance computational efficiency with solution quality and enable the integration of
location potentials for improved realism. While CARLA demonstrates robustness and flexibility,
its performance ultimately depends on accurate HTS inputs. Future work will focus on integrating
it into a full framework, where it may replace several existing algorithms.
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