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Short summary

We explore the potential of Generative Artificial Intelligence (AI) agents created using open-access
and locally hosted Large Language Models (LLMs) in replicating human survey behaviour and
mode choice preferences in scenario-based travel surveys. The aim is to establish performance and
validation benchmarks for utilizing AI agents in travel behaviour analysis, agent-based simulations,
and other case uses. Accordingly, we developed a systematic scientific approach to assess the
performance of seven open-access foundational LLMs, with parameters ranging from one to seventy
billion, which can be generalized for creating and validating the performance of Generative AI
agents in various applications. The AI agents were developed using a zero-shot learning approach,
incorporating both unrestricted sociodemographic and static prompting, as well as a dynamic
restricted sociodemographic prompting strategy. The performance of these agents was validated
against the human benchmark dataset, evaluating their effectiveness and reliability in capturing
and replicating nuanced travel behaviour.
Keywords: Generative AI, AI Agents, Large Language Models (LLMs), Travel Behavioural Mod-
elling, Travel Surveys

1 Introduction

Travel surveys are the backbone of effective transportation planning and operations. Over time,
travel diaries and scenario-based surveys have significantly evolved, transitioning from paper-based
methods to smartphone applications Patterson et al. (2019), and even to virtual reality scenario-
based solutions Ansar et al. (2023). These advancements aim to address longstanding operational
and technical challenges—whether related to hypothetical bias, cost, or low participation rates
Stopher & Greaves (2007). As generative AI is advancing in all fields, many researchers are
investigating its potential application in transportation operations and planning and its possible
contribution to solving some of the longstanding issues of human mobility, traffic operation and
planning.
Mahmud et al. (2025) discussed the potential of foundational LLMs such as BERT, and GPT in
broader transportation applications, especially in intelligent transportation systems (ITS) such as
in traffic management, autonomous driving, and infrastructure optimization. Yan & Li (2023) on
the other hand, discussed the potential of generative AI and LLMs in traffic perception, traffic
prediction, simulation, and decision-making, as well as in human mobility prediction. Hence, at-
tempting to address the traditional operational challenges from the regular recording of human
mobility patterns. In a recent study by Wang et al. (2023), the authors presented the LLM-Mob
framework using GPT-3.5-turbo via the OpenAI API, which aims to predict the next location a
person will visit based on their past mobility patterns. The research used public human mobility
datasets to demonstrate that LLM-Mob outperforms deep learning models in predictive perfor-
mance and offers superior interpretability. GPT-4 was also used in a recent study on travel diaries
generation for urban mobility, where the LLM was used to generate realistic and personalized
travel diaries incorporating individual profiles and contextual reasoning. In this study, the authors
highlighted the need to enhance data diversity and address privacy concerns when applying such
AI models in mobility studies Li et al. (2024).
Despite the growing interest, research on LLMs in transportation remains limited. Most studies
have focused on specific use cases or a single LLM model or framework, restricting the generaliz-
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ability of findings across diverse contexts. High computational costs often hinder research efforts,
while sensitive or proprietary datasets remain inaccessible to many researchers. Data privacy con-
cerns are particularly significant when dealing with personal mobility data, which highlights the
need for a comprehensive testing framework. Such a framework should evaluate open-access, com-
putationally feasible LLMs, detailing their potential and limitations across various applications.
In this study, we address these challenges by evaluating seven open-access models with different
architectures against human-based mobility responses, utilizing locally hosted, computationally
feasible solutions.

2 Methodology

We develop a methodology for the complete AI agent generation process and the verification of the
agent’s responses. At first we provide details regarding the LLMs setup and the local API server,
along with the AI agents and their persona generation approach. The details on the case study of
the Stated Preference (SP) data used to verify the AI agent’s responses are then provided.

AI Agents Generation

As detailed in Figure 1, we used seven open-access LLMs for the generation of the AI agents using
zeroshot learning approach. Two methods were followed as part of the zero-shot learning. First,
we generated individual agents with static, context and scenario-based prompting where agent
sociodemographics were unrestricted and determined by the LLMs for each run along with the
mode choice for the described travel scenario. The second zeroshot AI agents were developed using
dynamic prompting and restricted sociodemographic. In the second approach, the AI agent persona
is fed to the LLM dynamically for each loop, creating an agent with matching socioeconomic
characteristics of the corresponding human respondent and returning the agent selected travel
mode according to the described scenario.
The aim is to generate N number of AI agents, representing a survey respondents. As they
are generated for each LLM model we are testing, each of them is provided sociodemographic
characteristics aligned with a set of predetermined characteristic variables. For the purpose of
representing the process we define the following parameters:

• M: the LL model ( Open Access locally Hosted LLM).

• Qi: the combined prompt for agent i, consisting of system and user prompts.

• f(M, Qi): a function that queries the model M with Qi and returns a raw text response Ri.

• g(Ri): a function that attempts to parse a valid JSON object Ji from the raw text Ri.

• O = {k1, k2, . . . , kc}: the set of c predetermined characteristic variables and the choice.

• h(Ji,O): a function that standardizes the variables characteristics in Ji to the set O, pro-
ducing a dictionary Di.

In practice, the procedure to generate the N agents with their sociodemographic characteristics
and mode choice can be achieved with the following steps:
For each agent i, we have:

Qi = (system prompt, user prompt), (1)

- Model Generation, Query the model:

Ri = f
(
M, Qi

)
. (2)

- Extract and validate JSON, attempt to parse Ri:

Ji = g
(
Ri

)
. (3)

Standardize Keys Map the JSON keys to the official schema:

Di = h
(
Ji,O

)
. (4)
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Figure 1: AI Agents Generation Methodology

Row Construction For each k ∈ O:

ri,k =

{
Di[k], if k ∈ Di,

"N/A", otherwise.
(5)

Hence the row for agent i is
ri =

(
ri,k1

, ri,k2
, . . . , ri,kc

)
. (6)

Append to database Insert ri into the database. After iterating i = 1, . . . , N , we obtain:

database =


r1
r2
...
rN

 , (7)

an N × c matrix where each row is as in (6).

For the dynamic restricted approach, in a previous scenario we defined a more explicit prompt

Qi =
(
S, U(di)

)
(8)
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where S is the system message and U(di) injects some dynamic content di. Now we adapt this
idea to incorporate real survey respondents’ sociodemographics rather than synthetic data, and to
capture a single key outcome: the chosen travel mode.

1. Redefine di as actual survey data for respondent i, e.g. age, income, household size, etc.
This replaces any previously synthetic di.

2. Dynamic Prompt Construction. As in Equation (1)

Qi =
(
S, U(di)

)
,

but now U(di) embeds real attributes. The subsequent calls (6)–(7) remain the same, with
Ri, Ji, and Di unchanged except for the fact they come from real-data prompts.

3. Extracting One Key Response: Choice.
Instead of collecting many fields from Di, we now want only the single chosen mode. Define
a new function σ(·) to extract one field from Ji. We introduce:

choicei = σ
(
Ji
)
, (8)

which yields the chosen travel mode (e.g. "Private Car"). All other data in Di can be
ignored or omitted.

4. Final Output. Equation (7) provided a CSV-like structure that stores all 58 official keys.
Now, each row need only keep the real input (di) and the single chosen mode choicei.
Formally,

CSVsurvey =
[
i di choicei

]
i=1,...,N

. (9)

5. Overall Loop. The iteration i = 1, . . . , N in (8)–(2) and (2) remains the same, but we
store only choicei from (8). Symbolically,

For i = 1 to N :
(
Qi, Ri, Ji, choicei

)
. (10)

In short, real data di is used to build the prompt, the model returns Ji, and we record
choicei.
All other steps (reading data, forming the loop over i = 1, . . . , N , querying M, parsing Ri,
and writing output) remain identical to the original procedure, except that we store only
choicei from each agent’s JSON response.
The equations define the complete looped process for generating N synthetic agents, ex-
tracting and standardizing their responses, and storing them in a tabular CSV format.

Case Study

To verify the AI agent’s ability to replicate human behaviour effectively, its behavioural per-
formance must be tested against actual human benchmarks in identical contextual and travel
scenarios. While testing for the agent’s behaviour in different spatial and temporal frames is
underway, in this submission, we present the metrics of different LLM agents’ performance
with reference to a recently stated preference (SP) conducted in the Brightwater community.
Brightwater community is a master-planned, mixed-use community on 72 acres of waterfront
land in Port Credit, Mississauga, including over 2,900 residential units and 300,000 sq. ft.
of commercial space, to be completed in 2029 (estimated), with first residents occupation
in 2023. The data collection campaign ran from October 31, 2022, to November 20, 2022.
A total of 159 future residents completed the survey which included key sociodemographics
information as well as perception related questions and scenario based travels from Brighwa-
ter location to key neighbouring cities and areas in different seasons and weather conditions.
Figure 2 shows the case study location and the key scenario variations in addition to the
travel scenario used for the context development and LLM agent’s response verification.
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Figure 2: Case Study Location and Travel Scenario Details

3 Results and discussion

For the unconstrained static promoting, a total of four LLMs were examined, namely the
LLama 3.2 3B, Qwen 2.5 7B, Stealth 1.2 7B and Mistral 7B Q4. These models were selected
to cover the most prominent open access foundational models, and so that it is of a medium
to small size and can be hosted and operated on top of a line user machine, but not at an
enterprise scale. On the other hand, the models used for the restricted AI agent generation
covered the same four models in addition to Llama 3.2 1B, Llama 3.3 70B, and Qwen 2.5 32B.
The three additional models were possible due to the difference in token intensity between
the restricted and unrestricted agent generation, especially on the output side, which allowed
the testing of larger models.
For the analysis of the unrestricted LLM agents, the distribution of their sociodemographic
characteristics was compared to that of the actual respondents. The comparison was con-
ducted using the normalized Root Mean Square Error (nRMSE) to assess the frequency
distribution of categorical sociodemographic variables, as well as the Chi-square test and the
P -value for the goodness-of-fit test. The null hypothesis states that there is no significant
difference between the categorical distribution of the AI agents’ sociodemographic variables
and that of the actual respondents.
Table 1 presents the results of this exercise for the four models. The nRMSE varied across
different variables, with an average ranging from 0.27 for Stealth 1.2 7B to 0.32 for Mistral
7B Q4, considering all sociodemographic characteristics. This indicates that, on average, the
predicted distributions of the sociodemographic characteristics deviate by 27% to 32% from
the actual distribution of respondents’ sociodemographics. While the AI-generated agents
capture broad patterns of residents’ sociodemographics, the observed error suggests clear
discrepancies in capturing finer details of respondents’ characteristics based solely on context.
This is further supported by the Chi-square test and P values, which led to the rejection of the
null hypothesis for all variables across all models, except for scooter ownership in the Llama
3.2 3B model. The rejection of the null hypothesis indicates that the predicted distributions
significantly differ from the actual data. While it is important to acknowledge that the
actual respondent’s sociodemographic variables distribution is limited in size and by the
scope of the study, the models had little heterogeneity in agents’ sociodemographics despite
being generated independently. Further investigation is underway on different datasets with
larger population sizes. One key consideration to improve this limitation is to establish a
guided sociodemographic generation, where aggregate level statistics per variable category
are provided for the model to develop granular level agents sociodemographic personas.
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Table 1: Sociodemographic Analysis of Unrestricted LLM Agents Compared to Survey
Respondents
Variable Llama 3.2 3B Qwen 2.5 7B Stealth v1.2 7B Mistral 7B Q4

nRMSE Chi-Square P-Value nRMSE Chi-Square P-Value nRMSE Chi-Square P-Value nRMSE Chi-Square P-Value

Young 0.8931 1401.26 0.0 0.1006 17.79 0.000025 0.1006 17.79 0.000025 0.8805 1362.06 0.0
Adult 0.5220 173.86 0.0 0.4717 141.96 0.0 0.4717 141.96 0.0 0.5094 165.58 0.0
Middle Age 0.3019 68.75 0.0 0.3019 68.75 0.0 0.3019 68.75 0.0 0.3019 68.75 0.0
Old 0.0692 11.81 0.000587 0.0692 11.81 0.000587 0.0692 11.00 0.000911 0.0692 11.81 0.000587
Gender 0.3182 64.66 0.0 0.4679 139.84 0.0 0.2478 39.22 0.0 0.4679 139.84 0.0
Marital Status 0.7987 642.16 0.0 0.1949 38.50 0.0 0.1949 38.50 0.0 0.1194 14.46 0.000143
Student 0.0314 5.12 0.0235 0.0314 5.16 0.0230 0.0314 5.16 0.0230 0.0314 5.16 0.0230
Employment 0.1949 38.50 0.0 0.1949 38.50 0.0 0.1949 38.50 0.0 0.1949 38.50 0.0
Driving License 0.0253 4.12 0.0421 0.0253 4.12 0.0421 0.0253 4.12 0.0421 0.0253 4.12 0.0421
Vehicle Ownership 0.0440 7.32 0.0068 0.0440 7.32 0.0068 0.0377 5.37 0.0203 0.0440 7.32 0.0068
Transit Pass 0.0859 4.69 0.0302 0.3441 81.45 0.0 0.3630 90.63 0.0 0.3630 90.63 0.0
Bicycle Ownership 0.3924 105.04 0.0 0.6603 309.16 0.0 0.6415 291.75 0.0 0.6603 309.16 0.0
Scooter Ownership 0.0182 1.94 0.1628 0.0251 4.10 0.0428 0.0251 4.10 0.0428 0.0251 4.10 0.0428
Residential Safety Perception 0.1132 20.29 0.000007 0.1132 20.29 0.000007 0.1132 20.29 0.000007 0.1132 20.29 0.000007
Residential Walking Friendly Perception 0.2138 43.24 0.0 0.2138 43.24 0.0 0.2138 43.24 0.0 0.2138 43.24 0.0
Residential Cycling Friendly Perception 0.2785 61.36 0.0 0.2435 46.93 0.0 0.2785 61.36 0.0 0.2785 61.36 0.0
Residential Scooter Friendly Perception 0.3145 63.80 0.0 0.5094 167.44 0.0 0.2138 29.50 0.0 0.5597 200.88 0.0
Public Transport Accessibility 0.4873 151.14 0.0 0.3804 92.10 0.0 0.4496 128.64 0.0 0.4810 147.27 0.0
Housing Type 0.6918 593.79 0.0 0.8490 894.37 0.0 0.8364 868.07 0.0 0.8490 894.37 0.0
Low Income 0.0828 13.45 0.000245 0.0828 14.35 0.000151 0.0828 14.35 0.000151 0.0828 14.35 0.000151
Medium Income 0.3790 86.92 0.0 0.5605 202.78 0.0 0.5605 202.78 0.0 0.5605 202.78 0.0
High Income 0.4777 133.53 0.0 0.4777 145.42 0.0 0.4777 145.42 0.0 0.4777 145.42 0.0
Toddler Child 0.1257 21.72 0.000003 0.1257 22.87 0.000002 0.1257 22.87 0.000002 0.1257 22.87 0.000002
Young Child 0.0377 5.92 0.0149 0.0377 6.23 0.0125 0.0377 6.23 0.0125 0.0377 6.23 0.0125
Household Size 0.5911 250.07 0.0 0.6666 318.00 0.0 0.6666 318.00 0.0 0.6666 318.00 0.0
Number of Cars 0.5283 210.56 0.0 0.6981 367.68 0.0 0.2955 65.92 0.0 0.3018 68.75 0.0

On the other hand, the analysis for the mode choice distribution from the different LLM
Agents responses is shown in Figure 4. The Agents were given the option to select among six
mode choices, as well as to determine the choice availability for the described travel scenario.
Stealth 1.2 7B showed superior performance with nRMSE value of 0.13 compared to 0.4 for
Mistral 7B Q4 and around 0.3 for both Llama and Qwen models. The results suggest that
Stealth 1.2 7B provides a closer approximation to the actual mode choice distribution, with
lower deviations in predicting respondents’ travel preferences. The relatively lower nRMSE
of 0.13 indicates that this model shows a better understanding of mode choice behaviour,
capturing the underlying patterns of the different sociodemographic influences on the mode
choice preference. Stealth was developed by Jan and is part of a new experimental family
designed to enhance Mathematical and Logical abilities. It is important to highlight two
takeaways here; first, it is important to note that the differences in performance across models
are indicators of the varying capabilities of LLMs in processing and interpreting contextual
information related to travel behaviour. Therefore, we are investigating the impact of the
temporal and spatial context variation on the model performance. Second, It was noted
during the analysis that all models were able to select only valid mode choices for travel
scenarios despite being presented with six mode choices, out of which two do not operate
on the selected route. This highlights the potential use of AI Agents for choice availability
analysis, an area of great impact, especially in the context of Revealed Preference (RV),
where the non-selected choices availability is difficult to obtain.

Figure 3: nRMSE of the Mode Choice Distribution for Unrestricted LLM Agents Com-
pared to the Actual Respondents
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As for the dynamic prompting and restricted sociodemographic agents that align with the
actual respondent’s characteristics. Figure 4 shows the drop in the nRSME values with the
introductions of Agents personas. Mistral and Qwen had the most significant reductions with
75% and 74% reduction rates compared to their unrestricted versions. Stealth maintained
its robust performance recording one of the lowest nRMSEs of 0.1. Llama 3.2 3B model,
on the other hand, didn’t show significant improvement, with only a 14% reduction in its
overall nRMSE value for the mode choice distribution. The reduction in the nRMSE mainly
highlights the limitations of the LLMs to create diverse agent personas on repeated static
contextual prompts. The heterogeneity that was introduced by the dynamic prompting for
agents’ persona creation improved the choice distribution for all models, although to varying
degrees. The nRMSEs for all seven models are shown in Figure5. Stealth, Mistral and Qwen
2.5 7B showed the best performance compared to the rest of the models.

Figure 4: nRMSE of the Mode Choice Distribution for Restricted LLM Agents Vs Unre-
stricted LLM Agents Compared to the Actual Respondents

Figure 5: nRMSE of the Mode Choice Distribution for Restricted LLM Agents Compared
to the Actual Respondents

Model’s accuracies, on the other hand, for the one-to-one prediction compared to the actual
respondents is presented in Figure 6. Llama 3.3 70B recorded the highest accuracy of 42%,
followed by Stealth and Mistral with 40 and 39%, respectively. It is worth highlighting that
despite the Llama 3.3 70B outperforming the rest of the models, it is not clearly evident
that the higher the parameters, the better the model performance. Stealth and Mistral
have way lower number of parameters than Llama 3.3 70B but still scored higher on the
nRMSE benchmark and marginally lower on the accuracy percentage. However, Qwen 2.5
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7B scored much better in both benchmarks than the version with 32B parameters, same
applies for Llama 3.2 1B and 3B parameters, so with the current results, its not evident
that the ni=umber of parameters directly impact the accuracy of the model for mode choice
prediction. However, this is under investigation with larger and more diverse datasets.

Figure 6: Restricted LLM Agents Mode Choice Prediction Model Accuracy

4 Conclusions

The potential of AI agents to replicate human mode preference in scenario-based surveys
was tested for four LL models under unrestricted sociodemographic and static prompting
approach. Additionally, this potential was tested using seven LL models under the dynamic
restricted agent’s creation approach to align with the human sociodemographics. The results
from the unrestricted direction do not significantly resemble the actual respondent’s sociode-
mographics and create a mode choice distribution with 0.27 to 0.32 nRMSE values. The
results highlight the variation between different LLM models in creating a heterogeneous
population, and that correlates with the mode choice preference. A key highlight from this
direction is the LLMs agent’s potential in mode choice availability studies, in addition to the
superior performance of the Stealth 1.2 7B, especially in mode choice distributions compared
to the rest of the open access models tested. Under the restricted AI agent creation, a sig-
nificant improvement was noticed for all models, highlighting the weakness of the tested LL
models in population synthesis using looped context-based prompting. The accuracy of the
seven tested models maxed at 42% for Llama 3.3 70B parameters, while the accuracy is low,
its based on zeroshot prompting. There is a significant potential for increasing the overall
models accuracy with few shot learning and parameters hyperparameters tuning, which we
are currently investigating. We will also investigate the generalization of the methodology
on a range of dataset, including a stated preference experiment for intercity travel by Wong
& Farooq (2018).
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