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Short summary

Individual commuter traffic, characterized by low car occupancy and significant emissions, offers
opportunities for ride-pooling as a sustainable alternative. This paper introduces a methodology
that integrates a dynamic demand model using agent-based simulations with ride-pooling service
and fleet optimization. The approach captures scenario-specific demand variations and enables
detailed fleet simulations while exploring service parameters, including pricing, detour limits, and
service constraints. It couples service parameters and service demand, while optimizing mobility
services within a large search space. A case study applied in suburban and rural regions demon-
strates the methodology’s potential to improve pooling efficiency and operational performance.
While the results highlight promising opportunities, further enhancements, such as stop-based sys-
tems and intermodal integration, are needed to maximize scalability and pooling potential. This
dynamic approach provides the foundation for a holistic, commuter-focused ride-pooling service
optimization. It addresses demand responsiveness, fleet management, and the diverse objectives
of commuters, providers, and transit agencies.
Keywords: Demand modeling, Operations research applications, Optimization, Pricing optimiza-
tion, Shared mobility.

1 Introduction

Situation of Commuter Traffic

Commuter traffic significantly impacts the transportation system, contributing to around 20% of
overall traffic volume in Germany. Approximately 74% of commuting distances are covered by pri-
vate cars, with a low average occupancy of 1.075 persons per vehicle. This heavy reliance on private
vehicles leads to high traffic volumes during peak hours and accounts for 22.4% of total passenger
traffic emissions, making it a major contributor to greenhouse gas emissions. Verkehrswende (2022)
Despite these challenges, commuter traffic offers opportunities for mobility service providers. Com-
mutes are repetitive and predictable, enabling the development of efficient, scenario-specific mo-
bility solutions. These patterns allow for stable operating margins and consistent traffic and
environmental impacts.
Ride-pooling combines trips from multiple customers into shared rides, increasing vehicle occu-
pancy and utilization. This reduces vehicle kilometers, emissions, and costs for both customers
and providers, especially with the usage of autonomous vehicles (AVs), addressing issues in current
commuter traffic. Ride-pooling can compete with private vehicles in terms of speed and comfort,
connect rural areas lacking public transport, and serve as first-/last-mile mobility, enhancing public
transport accessibility in underserved regions Santi et al. (2014); Alonso-Mora et al. (2017); Jian
Wen et al. (2018); Engelhardt et al. (2019); Dandl et al. (2021).
Commuter traffic’s high trip density, both temporally and spatially, allows ride-pooling to lever-
age network effects for improved pooling efficiency and system performance Tachet et al. (2017);
Engelhardt et al. (2019); Kucharski & Cats (2022).

Challenges in Optimizing Ride-Pooling Services

Optimizing ride-pooling for commuters involves several challenges. The novelty of ride-pooling ser-
vices in operation means there is limited guidance for its implementation. Scenario-specific factors
such as commuter behavior, public transport availability, traffic density, and commuting patterns
make it difficult to identify feasible and beneficial use cases. Furthermore, demand prediction holds
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another challenge, as little historical demand data exists for ride-pooling services. The demand
is interdependent with service parameters, such as pricing models and detour limits, which them-
selves depend on scenario-specific factors like infrastructure and competition from other modes of
transport.
The optimization process involves large search spaces of service parameters that are correlated
with the fleet characteristics. Therefore, fleet design must be integrated with service optimization,
adding another layer of complexity.
In this paper, ride-pooling potentials for commuter traffic are explored, and a methodology for
holistic service optimization with a focus on adaptive demand modeling is presented.

Literature Review

Several research areas are related to the approach in this paper, including demand modeling for ride-
pooling systems, the influence of service parameters on demand and performance, and optimization
methods involving multiple actors.
Agent-based modeling frameworks using activity-based mode choice, such as MATSim Horni et
al. (2016), have proven effective in modeling demand for ride-pooling services. These frameworks
simulate individual travel behavior and interactions within the transportation system, allowing
detailed scenario-based analysis. Using MATSim, Zwick & Axhausen (2020a,b); Zwick et al.
(2021) applied a ride-pooling service in multiple scenarios to explore the influence of different
service parameters on performance and environmental impacts. These methods often rely on com-
putationally intensive iterative simulations to adjust demand based on service parameter changes,
limiting scalability for large-scale optimization.
Several studies explore the influence of various parameters on service performance and demand by
comparing pooled and private trips. Kucharski & Cats (2020, 2022) introduced graph-based meth-
ods to efficiently match requests to pooled rides, reducing computational complexity, and investi-
gated occupancy rates under various fare discounts, demand densities, and operational strategies.
De Ruijter et al. (2023) studied demand behavior in relation to sharing discounts, delay aversion,
and demand distribution. The influence of detours on ride-pooling demand and performance has
been studied by Alonso-Mora et al. (2017); Ke et al. (2021). Ride matching, operational strate-
gies, and fleet optimization techniques were investigated by Santi et al. (2014); Alonso-Mora et al.
(2017); Kucharski & Cats (2020); Engelhardt et al. (2022).
Efforts have been made to incorporate interdependencies between service parameters in optimizing
ride-sharing services and demand. Liu et al. (2019) developed a dynamic demand model that
adjusts agent mode choice based on service parameters and optimizes fleet size and fares. Wilkes
et al. (2021) emphasizes real-time demand-supply linkage, coupling a travel demand model with
ride-pooling optimization to reach equilibrium without iterative simulations. The work of Dandl
et al. (2021) examines the interplay between regulators, providers, and customers. A three-level
model is optimized, aiming for optimality at each level. Demand is inferred from demand matrices,
and a mode choice model is implemented that allows a choice between public transport, private
car, and a ride-sharing service.
While existing methodologies have significantly advanced ride-pooling services, a methodology
handling holistic ride-pooling service optimization is still needed. This method must capture
interdependencies between demand and service parameters while enabling rapid iteration of large
search spaces. Scenario-driven, agent-based demand generation needs to be combined with detailed
service optimization techniques. In this way, ride-pooling services can be tailored to different
contexts, exploring efficient and sustainable mobility solutions for all regions.

Research Goal

The research aims to address critical gaps in ride-pooling optimization by focusing on commuter-
specific needs and dynamic demand modeling. Existing studies often rely on static demand models,
overlooking the interplay between service parameters and user demand. To overcome this limi-
tation, this study leverages the MATSim simulation framework to conduct agent-based mobility
simulations, capturing dynamic demand variations and adapting to scenario-specific changes. A
comprehensive optimization framework integrates these simulations with the optimization of ser-
vice parameters, fleet management, and pricing schemes for ride-pooling services. Additionally, the
research evaluates ride-pooling in conjunction with other transportation modes, ensuring realistic
estimates of user acceptance. Specific commuter constraints regarding delays and cancellations are
considered.
The following section 2 presents the methodology used to achieve these goals, followed by a case
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study in section 3, that applies the methodology to a rural and a suburban commuter use case.
The simulation results are then presented and analyzed. Finally, the methodology is reviewed, and
limitations, further research, and future developments are discussed within the section 4.

2 Methodology

Base Simulation

MATSim is used to run a mobility simulation for the scenario containing all agents from the
population. A trip-based discrete mode choice model is used Hörl et al. (2018). All base modes
available in the scenario are used for mode choice. This simulation results in a travel time matrix
for the simulated traffic network as well as a population containing the daily schedules of the
agents. From this population, the base modes and base scores for each trip can be extracted.

Preconditions

To streamline the optimization process and adapt it for commuter traffic, specific preconditions
are applied based on the characteristics of commuter trips and the need to reduce computational
complexity while maintaining realism.
Pre-Planned Trips: All trips are assumed to be pre-planned, as commuters typically know their
schedules in advance. This allows the optimization process to focus on fixed trip schedules without
accounting for real-time changes.
No Waiting Time: Given the pre-planned nature of trips, it is assumed passengers experience
no waiting time. Services are designed to pick passengers up at the exact planned departure time,
and delays at home or work are not perceived as waiting.
Relevant Parameters: Following the absence of waiting time, the ride-pooling service can be
described using two key parameters: Price, reflecting cost per kilometer, and Detour, representing
the relative increase in travel time compared to a direct trip.
Commute Trips: The analysis includes only commute trips that start at home and end at the
workplace (or vice versa), without intermediate stops. This ensures a focus on typical commuter
scenarios while simplifying the analysis. This constraint can be released to allow intermediate
stops within later research.
Static Travel Times: Fixed travel time matrices are used, allowing computationally intensive
tasks to be preprocessed. This significantly reduces optimization time.
Linear Mode Choice Model: Agents choose the mode with the highest score for each trip.
Scores are precomputed based on static travel times, eliminating the need for recalculation during
the simulation and simplifying decision making.
These preconditions ensure the optimization process remains efficient and focused on commuter-
specific requirements while enabling a realistic, holistic evaluation of ride-pooling services.

Demand Generation

Commuter demand is generated using an agent population by adding commutes to the demand
database that can be served by ride-pooling, while improving trip utility. An optimization frame-
work, developed for MATSim, evaluates various ride-pooling service configurations by applying a
grid search iterating two parameters:

• Price: The cost per km in €/km

• Detour Time: The time difference needed for each commuter compared to the direct trip

Each trip is routed and scored based on the specific ride-pooling parameters, incorporating price
and detour, reflecting the agent’s trip utility. This generates a demand database containing trip
scores for all service configurations. Comparing ride-pooling scores with base mode scores identi-
fies configurations where ride-pooling outperforms alternatives, determining the minimum require-
ments for the demand generation. These results are stored in a minimum requirement demand
database for further use.
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Ride Generation

Feasible shared rides are generated using the ExMAS algorithm Kucharski & Cats (2020), adapted
to handle the commuter-specific needs. The algorithm identifies all potential rides that meet the
following conditions:

• Passenger Constraints: All passenger minimum requirements are satisfied.

• Ride Structure: All passengers origins are visited first, followed by all destinations.

This produces a database of viable rides serving all possible requests, while reducing variational
complexity and favoring rides with high pooling rates.

Parameter optimization

The optimization process iterates over global service parameters, including pricing schemes, detour
limits, and rejection schemes to tailor the ride-pooling service towards the optimization goals. The
demand database is filtered to include only requests feasible under these current pricing constraints.
Similarly, the rides database is updated to only retain rides that serve these filtered requests while
satisfying all detour requirements. This generates the actual demand for the ride-pooling service
and the rides that can service this demand, simply by filtering these two datasets.

Mixed-Integer Programming for Matching and Optimization

The Mixed-Integer Programming (MIP) model matches rides to requests, determining which rides
to activate and which commuters to reject. The model considers commuter specific constraints
such as a commuter rejection rates, as well as fleet size constraints and operational costs.

Variables:

• Ride Activation: Binary variable xr for each ride r ∈ R, where R is the set of all possible
rides:

xr =

{
1 if ride r is selected,
0 otherwise.

• Commuter Rejection: Binary variable yc for each commuter c ∈ C, where C is the set of
all individual commuters:

yc =

{
1 if commuter c is rejected,
0 otherwise.

• Fleet Size: Integer variable F representing the number of vehicles:

F ∈ Z+

Constraints:

• Commuter Coverage: If a commuter is accepted (yc = 0), then every request p they make
must be served by exactly one ride from the set of rides Rp that can serve the request. If
the commuter is rejected (yc = 1), none of their requests can be served. This is formulated
as: ∑

r∈Rp

xr = 1− yc ∀c ∈ C, ∀p ∈ Pc (1)

Here, Pc ⊆ P represents the set of all requests made by commuter c, and Rp ⊆ R is the set
of rides that can serve request p.

• Rejection Limit: The total number of rejected commuters cannot exceed the allowable
rejection rate α, defined as a percentage of the total number of commuters:∑

c∈C

yc ≤ ⌊α · |C|⌋ (2)

where α ∈ [0, 1] is the maximum allowable rejection rate, and |C| is the total number of
commuters.
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• Fleet Size: The number of active rides at any time t cannot exceed the available fleet size:∑
r∈A(t)

xr ≤ F ∀t ∈ T (3)

Here, A(t) ⊆ R denotes the set of rides active at time t, and T represents the set of all
relevant time intervals.

Objective Functions:

Two objective functions are considered, each optimized in separate runs:

• Profit Maximization: The goal is to maximize the profit:

max
(∑
r∈R

(πr − cr)xr − cv · F
)
. (4)

Here, πr represents the income from ride r, cr represents the operational cost for ride r, and
cv is the fixed cost per vehicle.

• Fleet Distance Minimization: The goal is to minimize the total distance traveled by the
fleet:

min
(∑
r∈R

dr xr

)
. (5)

Here, dr represents the distance covered by ride r.

Outputs of the MIP Model:

The MIP produces the following outputs:

• Activated Rides: A list of rides r ∈ R for which xr = 1, indicating they are selected for
service.

• Fleet Size: The optimal number of vehicles F required to service the activated rides,
ensuring fleet efficiency and cost-effectiveness.

• Rejected Commuters: A list of commuters c ∈ C for which yc = 1, indicating their
requests are not served. This helps in understanding the impact of rejection limits and
commuter coverage.

By combining a parameter grid search with the MIP optimization, the framework ensures efficient
matching of rides to requests while considering commuter and operational constraints optimizing
for operator objectives. This approach allows for scalable and scenario-specific ride-pooling solu-
tions tailored to commuter needs. The MIP can be extended for fleet management and pricing
optimizations in future research.

3 Results

Case Study

Two commuter scenarios (25% population sample) in Germany, one rural and one suburban, are
used to apply the methodology. The rural scenario is characterized by a large number of commuters
with varying travel distances, including commutes of up to 80 km to the next major city. The
suburban scenario focuses on commutes between a suburban and an urban area. Both cases are
characterized by poor public transport connections compared to car travel times.
The base simulation is performed using MATSim, generating a travel time matrix and filtering
commuters from the population. The ride-pooling parameter set includes prices ranging from
0.0€/km to 1.0€/km (in 0.05€/km increments) and additional detours ranging from 0% to 100%
of direct trip time (in 5% increments). Trip scores for all parameterizations are calculated and
compared to base scores, creating the minimum requirements database.
The optimization search space is defined to include pricing schemes, minimum prices, maximum
detours, and rejection rates. Four pricing schemes are examined:

• Equal Pricing: All passengers pay the same price per kilometer.
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• Detour Pricing: Passengers pay a fixed price per kilometer, discounted by the percentage of
their actual detour.

• Personal Pricing: Passengers are charged the maximum price that still improves their score
over the trips base score, considering their actual detour.

• Ride-Based Pricing: Rides are priced at the maximum price all passengers served by this
ride can pay while still improving their base score, considering their actual detour.

While equal and detour pricing are known in current research, the personal and ride pricing schemes
are enabled by the developed demand dataset. For operating costs 0.15€/km and 15€/Vehicle/Day
are assumed.

Results

First, the pooling potential and minimized fleet distance, achievable for a ride-pooling service when
serving all requests, are simulated. The personal pricing scheme is used with a minimum price set
to €0.0/km, generating the maximum demand. Maximum detours are varied. Figure 1 shows the
results for both the suburban and the rural scenarios.

Figure 1: Fleet Distance and Pooling Rate over Maximum Detour. Suburban vs. Rural
Scenario.

Both scenarios demonstrate potential for fleet distance reduction. The suburban case shows greater
pooling efficiency due to shorter, denser commutes, achieving pooling rates above 1.6 compared to
1.3 in the rural case.
Next, the influence of the price on the demand is examined by fixing maximum detours at 40% of
direct trip time. Prices range from 0.0€/km to 1.0€/km, and rejection rates up to 0%, 5%, 10%,
and 100% are allowed. Figure 2 presents the results for the suburban scenario.
Higher prices significantly reduce the number of fulfilled requests due to reduced demand. Profits
stabilize beyond 0.6€/km. From this point, higher prices cause further declines in (fulfilled) re-
quests without additional profit gains. Increased rejection rates improve profit only up to 0.4€/km.
To compare pricing schemes, detours remain fixed at 40% of direct trip time, prices are iterated,
and the rejection rate is set at 5%. Figure 3 shows results for the rural scenario.
As expected, the personal pricing scheme performs best, particularly at lower prices. As prices
increase, ride-based pricing becomes equivalent. Detour pricing underperforms compared to equal
pricing up to 0.4€/km, after which it is able to achieve higher profits while also serving more
requests.

Discussion

The results demonstrate that the proposed methodology effectively optimizes ride-pooling services
across multiple scenarios. It captures the interdependencies between service parameters and de-
mand while allowing for holistic service optimizations in a scenario-based manner. In the presented
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Figure 2: Profit and Fulfilled Requests over Price per km. Suburban Scenario.

Figure 3: Profit and Fulfilled Requests by Pricing Scheme. Rural Scenario.

simulations, suburban scenarios show higher pooling potential due to shorter, denser commutes.
The pricing strategy heavily influences the demand, with diminishing returns beyond 0.6€/km.
Personal pricing schemes maximize profit but are not very applicable in reality. Detour pricing
performs well at higher price levels, offering a viable option for real-world usage.
Matching a scenario with several thousand requests can be archived on a regular PC in seconds,
allowing iteration of large search spaces. This enables providers to identify promising markets and
adjust ride-pooling service configurations in the early stages of development.

4 Conclusion

This study presents a methodology that bridges the gap between detailed mobility simulations and
computationally efficient, high detail fleet optimization for ride-pooling services. By integrating a
dynamic demand model, responsive to changes in service parameters, it captures the influence of
critical supply parameters, such as pricing schemes, detour limits, rejection rates, and minimum
prices, on the service demand. The methodology highlights rural inclusion by comparing rural and
suburban scenarios and emphasizes commuter requirements, such as consistent rejection schemes
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and unique delay constraints, that were not considered in previous studies.
The results highlight the potential of ride-pooling services to mitigate the negative impacts of com-
muter traffic while maintaining viable business opportunities for providers. The findings demon-
strate higher pooling efficiency in suburban areas due to shorter and denser commutes, while rural
areas benefit from reduced travel costs and improved accessibility. However, the current config-
uration, focused on door-to-door services, reveals limited pooling potential. To address current
limitations and further enhance pooling efficiency, future work will focus on integrating stop-based
systems and intermodal transport solutions. Stop-based services hold significant potential for
increasing pooling rates and reducing operational costs, while intermodal integration can seam-
lessly connect ride-pooling with the public transport, enhancing accessibility and sustainability.
This methodology also enables future refinements in fleet optimization, such as advanced vehi-
cle scheduling based on ride sequencing and dynamic pricing schemes tailored to time-based or
cluster-specific demand patterns. These extensions, combined with dynamic pricing strategies
and policy measures, provide a robust foundation for optimizing commuter-focused ride-pooling
services across rural, suburban, and urban contexts.
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