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SHORT SUMMARY 

This study explores the application of the Heteroscedastic Extreme Value (HEV) framework to 

specify nesting structures in Weibit choice models. While the HEV framework has effectively 

defined nested tree structures in Logit choice models, its potential in Weibit models has not yet 

been investigated. The nested Weibit (NW) model uniquely addresses heterogeneous covariance 

between alternatives, unlike the nested Logit (NL) model, which maintains fixed covariance. 

However, establishing nest specifications within the NW model presents an ongoing empirical 

challenge. By implementing the HEV Weibit (HEVW) model, we leverage its capacity to estimate 

individual variances, yielding distinct shape parameters for each alternative in a choice set. This 

variance analysis can unveil tree structures that may not be immediately evident to analysts rely-

ing on intuitive configurations. We demonstrate how to specify these nested structures in Weibit 

choice models based on HEVW model results, supported by empirical findings from London 

mode choice behavior. 
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1. INTRODUCTION 

The Nested Logit (NL) model has long been a basic in choice modeling, offering a solution to the 

limitations of the Multinomial Logit (MNL) model. The MNL model, while computationally ef-

ficient and widely used, assumes that unobserved error terms are independent and identically dis-

tributed (Ben-Akiva and Lerman, 1985). This assumption, however, leads to the well-known "Ir-

relevance of Irrelevant Alternatives" property, which simplifies substitution patterns and often 

results in unrealistic choice probabilities. The NL model addresses this issue by introducing a 

hierarchical structure that allows for correlations between alternatives within the same nest. For 

example, in transportation mode choice, non-motorized travel modes like walking and cycling 

can be grouped into a single nest to reflect their shared characteristic. This hierarchical nesting 

structure partially relaxes the independence assumption, making the NL model more robust for 

applications where alternatives are correlated. Despite its strengths, the NL model relies heavily 

on the analyst's intuition to define the nesting structure, which can lead to arbitrary groupings. 

The choice of nests significantly influences the model’s performance, as it determines how alter-

natives are grouped based on shared unobserved factors. To address this challenge, Hensher 

(1999) proposed the use of the Heteroscedastic Extreme Value (HEV) framework as a search 

engine for detecting and refining nesting structures. The HEV Logit (HEVL) model estimates the 

scale parameters of each alternative independently, capturing the heterogeneity in unobserved 

variances across alternatives (Bhat, 1995). This approach minimizes the subjectivity involved in 

nesting decisions by clustering alternatives with similar scale parameters. For instance, alterna-

tives with similar variances, such as different types of public transport modes, can be grouped 

together systematically. This method has been widely applied in empirical behavior studies 

(Rasciute and Pentecost, 2010; Genius et al., 2012; Yang et al., 2015; Hensher et al., 2015). How-

ever, its application is constrained by the NL model’s inherent limitation, which is its assumption 

of identical error distributions within each nest. This restriction imposes fixed covariances be-

tween alternatives within nests, which may oversimplify the substitution patterns and reduce the 

model's flexibility. 

The Multinomial Weibit (MNW) model has been proposed as a robust alternative that 

relaxes the assumption of identical distribution inherent in the Multinomial Logit (MNL) model. 

In the MNL framework, error terms are assumed to have fixed variance and follow an independent 

and identically distributed Gumbel distribution. In contrast, the MNW model introduces flexibil-

ity by employing a Weibull distribution (Castillo et al., 2008). Similar to the evolution from MNL 

to Nested Logit (NL) models, the Nested Weibit (NW) model extends the MNW framework by 

incorporating a hierarchical structure to account for correlations between alternatives (Gu et al., 

2022). The NW model provides several key advantages over other choice models, including flex-

ible covariance structures between alternatives within nests, which allows for a more realistic 

representation of substitution patterns compared to the fixed covariance assumptions found in NL 

models. Its ability to model both intra-nest and inter-nest variability makes the NW model partic-

ularly suitable for complex behavioral contexts, such as multi-modal transport systems, where 

alternatives exhibit diverse and overlapping attributes. Despite its enhanced flexibility, the NW 

model faces the critical challenge of defining an appropriate nesting structure, similar to that 

found in NL models. Although intuition and domain expertise often guide these decisions, they 

can introduce subjectivity and bias, potentially leading to suboptimal nests. This situation empha-

sizes the need for systematic, data-driven approaches to defining nests in NW models, an area 

that remains an open research question despite advancements in modeling frameworks. 

Given these challenges, this study explores the application of the Heteroscedastic Ex-

treme Value (HEV) framework to specify nesting structures in Weibull choice models. Similar to 

Logit choice models, the HEV Weibull (HEVW) model (Jang and Chen, 2025) can be utilized to 

define nested tree structures in the NW model. While the HEVL-guided approach has been effec-

tive in addressing the nesting limitations of the NL model, its efficacy in the context of the NW 
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model remains unexplored. The NW model’s flexibility, characterized by flexible covariances 

between alternatives within the nest, raises questions about the utility of variance-based clustering 

methods like HEVL guidance. Consequently, the question arises as to whether, and to what extent, 

the HEV framework can effectively specify these nested structures in the NW model. To address 

these research issues, this study investigates the applicability of HEV frameworks to specify 

nested tree structures in Weibit choice models by presenting empirical evidence based on London 

mode choice data. 

2. METHODOLOGY 

Heteroskedastic Extreme Value Weibit (HEVW) model 

Very recently, Jang and Chen (2025) proposed the HEVW model. Compared to the HEVL model 

(Bhat, 1995), the HEVW model allows for a more flexible error structure by capturing intra-

alternative heteroscedasticity. The model can be expressed as: 

 

 𝑈𝑖 = 𝑉𝑖 ∙ 𝜀𝑖 (1) 

 

where, 𝑉𝑖 is the observed deterministic utility of an alternative 𝑖, 𝜀𝑖 is error term which is inde-

pendently distributed following a Weibull distribution. 

 Based on the assumption that the error for each alternative has a specific shape parameter 

(𝛿𝑖) in a Weibull distribution, choice probabilities can be formulated as: 

 

 𝑃𝑖 = 𝑝𝑟𝑜𝑏(𝑈𝑖 ≥ 𝑈𝑗), for all  𝑗 ≠ 𝑖, 𝑗 ∈ 𝐶 

 

= 𝑝𝑟𝑜𝑏(𝑉𝑖𝜀𝑖 ≥ 𝑉𝑗𝜀𝑗) = 𝑝𝑟𝑜𝑏 (𝜀𝑗 ≥
𝑉𝑖

𝑉𝑗
𝜀𝑖), for 𝑉 < 0, 𝜀 > 0 

 

= ∫ (1 − 𝛬𝑊 (
𝑉𝑖
𝑉1
∙ 𝜀𝑖))

𝜀𝑖=+∞

𝜀𝑖=0

∙ (1 − 𝛬𝑊 (
𝑉𝑖
𝑉2

∙ 𝜀𝑖))⋯(1 − 𝛬𝑊 (
𝑉𝑖
𝑉𝐽
∙ 𝜀𝑖))

∙ 𝜆𝑊(𝜀𝑖)𝑑𝜀𝑖 

 

= ∫ 𝜆𝑊(𝜀𝑖) ∙ ∏ [1 − 𝛬𝑊 (
𝑉𝑖
𝑉𝑗
∙ 𝜀𝑖)] 𝑑𝜀𝑖

𝑗≠𝑖∈𝐼

𝜀𝑖=+∞

𝜀𝑖=0

 

(2) 

 

where, 𝜆(. ) and 𝛬(. ) are probability density function and cumulative density function of Weibull 

distribution respectively. The choice probability in equation 2 shows an open form. Jang and Chen 

(2025) showed that it can be approximated using the Gauss–Laguerre quadrature formula. The, 

the error variance can be defined as: 

 

 
𝑣𝑎𝑟(𝜀𝑖) = 𝑉2 [Γ (1 +

2

𝛿𝑖
) − Γ2 (1 +

1

𝛿𝑖
)] 

(3) 

 

where, Γ is the Gamma function. Therefore, the error variance is dependent on the not only shape 

parameter but also observed utility. 
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 The HEVW model is particularly effective in scenarios where alternatives exhibit distinct 

variances due to differences in observed attributes, such as in datasets characterized by wide at-

tribute ranges or complex multi-modal travel. By combining the strengths of the HEVL model 

with the added flexibility of the Weibull distribution, the HEVW model provides a robust frame-

work for capturing the complexity of choice behavior in real-world applications. 

HEVW model serves as a basis for structuring the nesting framework of NW model 

The estimation results derived from the Heteroskedastic Extreme Value (HEV) model provide 

alternative-specific shape parameters, which directly translate into alternative-specific error var-

iances. In line with Hensher's influential 1999 proposal, this flexible framework establishes a 

robust foundation for formulating and rigorously testing nesting hypotheses within the context of 

discrete choice modeling. Researchers employ an iterative process:  first identifying a compre-

hensive set of shape parameters from the HEV model estimations.  Subsequently, they conduct 

intuitive groupings of these parameters based on observed similarities.  These groupings are not 

arbitrary; rather, they reflect a deliberate and informed consideration of the shared characteristics 

and attributes that demonstrably link certain alternatives.  This methodical approach significantly 

reduces the subjectivity and potential biases associated with manually defining nest structures in 

traditional nested logit models.  The resulting hierarchical structure is not merely intuitive but 

also statistically well-supported, enhancing the credibility and reliability of the subsequent anal-

ysis. 

The iterative nature of this approach is particularly valuable in mitigating the risks asso-

ciated with the often-arbitrary groupings found in conventional nested logit models.  The HEV-

guided process ensures that any resulting nesting hierarchy is grounded in empirically-observed 

data patterns, enhancing the model's overall validity and predictive power.  This is clearly illus-

trated in mode choice modeling scenarios. For instance, motorized travel modes such as public 

transportation and driving are frequently treated as a single homogenous nest in standard analyses.  

However, applying the HEV-based approach often reveals a more refined structure.  The HEV-

derived shape parameter clusters may indicate distinct sub-nests within the broader category of 

motorized transport. This refined structure effectively accounts for intra-nest variability, reflect-

ing more accurately the heterogeneity of preferences among these alternatives and enabling a 

more precise analysis of substitution patterns between specific modes. For example, different 

types of public transport (bus versus subway) or various driving options (carpooling versus solo 

driving) may exhibit distinctly different patterns of variance and scale, leading to the identifica-

tion of distinct sub-nests, which would have been overlooked by an exclusively intuitive nesting 

approach.  This ultimately leads to more accurate estimations of choice probabilities and a deeper 

understanding of the underlying decision-making processes. 

Nested Weibit (NW) model 

The NW model is an extension of the NL model, addressing its limitations by incorporating the 

flexibility of the Weibull distribution (Kitthamkesorn and Chen, 2017). Both models introduce a 

hierarchical nesting structure to account for correlations between alternatives within nests, relax-

ing the Independence of Irrelevant Alternatives (IIA) assumption of the MNL model. The NW 

model relaxes the identically distributed assumption within nests in that Weibull distribution per-

mits alternatives within the same nest to have different error variances. The choice probability in 

the NW model is expressed as: 

 

 𝑃𝑖 = 𝑃(𝑢) ∙ 𝑃(𝑖|𝑢) (3) 
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Where, 𝑃(𝑢) is marginal probability of selecting nest of choosing nest u and 𝑃(𝑖|𝑢) is conditional 

probability of choosing alternative 𝑖 given nest u. Marginal probability P(u) is given by: 

 

 

𝑃(𝑢) =
(𝑉𝑢)

𝛿 ∙ [∑ (𝑉𝑖|𝑢)
−𝛿𝑢

𝑖∈𝑁𝑢 ]

𝛿
𝛿𝑢

∑ (𝑉𝑤)
𝛿

𝑤∈𝑁 ∙ [∑ (𝑉𝑗|𝑤)
−𝛿𝑤

𝑗∈𝑁𝑤 ]

𝛿
𝛿𝑤

 

(4) 

 

Where, 𝑉𝑢 and 𝑉𝑖|𝑢 are deterministic components at the nest and alternative levels, respectively. 

𝛿𝑢  and 𝛿 are shape parameters for the nest and alternative levels. The conditional probability 

𝑃(𝑖|𝑢) is expressed as: 

 

 

𝑃(𝑖|𝑢) =
(𝑉𝑖|𝑢)

−𝛿𝑢

∑ (𝑉𝑗|𝑢)
−𝛿𝑢

𝑗∈𝑁𝑢

 

(5) 

 

A key advantage of the NW model is its ability to represent heteroscedasticity, where alternatives 

within the same nest exhibit different levels of variance in choice behavior. This flexibility stems 

from the Weibull distribution, which introduces a perception variance as a function of the deter-

ministic utility (Gu et al., 2022). Specifically, the variance of an alternative's error term in the 

NW model is proportional to its deterministic utility, providing a more realistic representation of 

decision-making in scenarios with heterogeneous perceptions. 

 In summary, its ability to accommodate inter-nest correlations and intra-nest heterosce-

dasticity makes it a powerful tool for applications in transportation and beyond, where alternatives 

exhibit overlapping and diverse attributes. 

3. EMPIRICAL RESULTS  

Data (London Passenger Mode Choice) 

The London Passenger Mode Choice (LPMC) dataset serves as the empirical basis for this study, 

supporting the modeling of passenger behavior using the NW model. This publicly available da-

taset captures the complexity of urban multi-modal transport networks and provides rich attributes 

that are essential for understanding diverse choice behaviors. 

The data originates from three primary sources: the London Travel Demand Survey 

(LTDS), routing information from the Google Maps Directions API, and cost modeling based on 

fare and operational cost structures (Hillel et al., 2018). The LTDS provides socio-demographic 

information, including household size, income, and vehicle ownership, alongside detailed trip-

level data such as trip purpose, departure time, duration, and the observed mode. The dataset 

comprises 81,086 trips recorded between 2012 and 2015, encompassing four primary modes of 

transport: walking (17.6%), cycling (3.0%), public transport (35.3%), and driving (44.2%). These 

modes reflect the diverse mobility options in London and their usage patterns in an urban setting. 

The dataset’s detailed representation of multi-modal transport systems makes it particularly suit-

able for the NW model, which captures correlations between alternatives within nests, and the 

HEV Weibit model, which empirically detects heteroscedastic variances that guide the formation 

of these nests. 
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Estimation Results 

The results highlight the limited impact of using the HEV model as a search engine for construct-

ing the nesting structure of NW models. The analysis focused on comparing the model fit (meas-

ured by R-squared) under two scenarios: one with intuitive partitions based on analyst-defined 

groups and the other guided by HEV model-derived shape parameters. A commonly used distinc-

tion between motorized and non-motorized modes was employed for intuitive partitions, based 

on previous research (Eldeeb et al., 2021; Gumz and Török, 2015). 

 

 

Figure 1: Nest Structure with intuitive partitions (Example) 

 

Table 1: Nested Weibit model results with intuitive partitions 

Attributes Alternative(s) Parameter (p-value) 

Walking constant WK 0.000 (fixed) 

Cycling constant CY -45.922 (0.00) 

Public Transport constant PT -6.482 (0.00) 

Private Car constant PC -7.284 (0.00) 

Travel time WK, CY, PT, PC -1.000 (fixed) 

Travel cost PT, PC -1.548 (0.00) 

Reliability PC -21.435 (0.00) 

Shape Parameter WK, CY 0.688 (0.00) 

 PT, PC 1.000 (fixed) 

Lambda  3.580 (0.00) 

Sample size - 81,086 

Rho2 - 0. 258 

* WK: Walking, CY: Cycling, PT: Public Transport, PC: Private Car 
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Table 2: HEV Weibit model results 

Attributes Alternative(s) Parameter (p-value) 

Walking constant WK 0.000 (fixed) 

Cycling constant CY -43.000 (0.00) 

Public Transport constant PT -23.860 (0.00) 

Private Car constant PC -16.621 (0.00) 

Travel time WK, CY, PT, PC -1.000 (fixed) 

Travel cost PT, PC -3.073 (0.00) 

Reliability PC -32.750 (0.00) 

Shape Parameter WK 1.148 (0.00) 

 CY 1.000 (fixed) 

 PT 3.279 (0.00) 

 PC 1.913 (0.00) 

Lambda  3.801 (0.00) 

Sample size - 81,086 

Rho2 - 0.341 

* WK: Walking, CY: Cycling, PT: Public Transport, PC: Private Car 

 

The HEV-guided nesting structure slightly improved model fit, with R-squared values increasing 

from 0.258 to 0.262 (Tables 1 and 3). The HEV-guided approach established the nesting structure 

by distinguishing public transport and driving into separate nests, based on the notable differences 

in their shape parameters identified by the HEV Weibit model. In comparison to the results from 

the Logit models (where HEV guidance was applied to the Nested Logit model), which showed 

R-squared values increasing from 0.245 to 0.256, the improvement is smaller in the Weibit mod-

els. 

 

 

Figure 2: Nest Structure with HEV guide 
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Table 3: Nested Weibit model results with HEV guide 

Attributes Alternative(s) Parameter (p-value) 

Walking constant WK 0.000 (fixed) 

Cycling constant CY -40.794 (0.00) 

Public Transport constant PT -9.165 (0.00) 

Private Car constant PC -10.338 (0.00) 

Travel time WK, CY, PT, PC -1.000 (fixed) 

Travel cost PT, PC -1.905 (0.00) 

Reliability PC -27.714 (0.00) 

Shape Parameter WK, CY 1.000 (fixed) 

 PT 3.093 (0.00) 

 PC 2.041 (0.00) 

Lambda  3.234 (0.00) 

Sample size - 81,086 

Rho2 - 0. 262 

* WK: Walking, CY: Cycling, PT: Public Transport, PC: Private Car 

 

Unlike the NL model, which assumes identical error distributions within nests and relies heavily 

on hierarchical structures to improve model performance, the NW model potentially also benefits 

from its inherent flexibility in accommodating varying covariance structures. This flexibility may 

enable the model to capture better both intra-nest and inter-nest heterogeneity, which could, in 

turn, reduce the incremental value of HEV-guided nesting in defining substitution patterns be-

tween alternatives. Consequently, while the HEV-guided approach offers a systematic method for 

identifying potential nests, its impact on improving the overall model fit appears to be modest, 

possibly due to the intrinsic adaptability of the NW framework. 

Nevertheless, a key insight from the HEV-guided approach is the distinction in shape 

parameters for motorized modes. The HEV Weibit model results suggest notable differences be-

tween public transport and driving alternatives, indicating that combining these modes into a sin-

gle nest may overlook important heterogeneity. HEV-guided clustering could represent a refine-

ment over the intuitive partitioning approach, where motorized modes were grouped together. 

While these findings imply that separate nests for public transport and driving may better capture 

observed differences in variability, further empirical validation is needed to confirm the practical 

significance of this refinement. 

CONCLUSIONS 

This study investigated the application of the HEV model as a guide for defining nesting struc-

tures in the NW model using the LPMC dataset. While the HEV-guided approach slightly im-

proved the model fit (with R-squared increasing from 0.258 to 0.262), the enhancement was mod-

est compared to the results from the Logit models. This outcome highlights the inherent flexibility 

of the NW model, which already accommodates varying covariance structures and heteroscedas-

ticity, potentially reducing the added value of HEV-guided nesting. Nevertheless, the HEV-

guided approach identified significant differences in shape parameters for public transport and 

driving modes, suggesting that separating these modes into distinct nests better captures the 
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underlying heterogeneity. Despite the modest improvement in overall fit, this refinement high-

lights the potential of HEV-guided clustering to offer a more data-driven approach for defining 

nests, although further empirical validation is required to assess its broader applicability. 

 This paper only shows model fit results from one dataset because of space limits; how-

ever, we have much broader findings. The conference presentation will include alternative nesting 

specifications, analysis of multiple datasets, and a full look at predictive performance. 
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