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SHORT SUMMARY 

This study investigates climate change's impact on travel behavior and provides actionable in-

sights for enhancing public transportation resilience. We employ a novel Hybrid Dynamical Sys-

tems Thinking Approach (HDSTA), integrating knowledge graphs with Machine Learning (ML) 

models, to predict bus ridership, traffic volume and speed. Using data from a major Israeli inter-

state highway, including weather reports, passenger counts, and traffic sensor inputs, our ML 

models demonstrated superior predictive accuracy for climate event transportation sensitivity 

compared to traditional methods like Structural Equation Models (SEM). Empirical analysis re-

vealed rainfall is a more significant factor in reducing bus ridership than heatwaves. Based on 

these patterns, we propose a Weather Resilience Index (WRI) to quantify weather's impact on 

ridership at bus stops, highlighting the need for targeted adaptation strategies. These tools em-

power transportation stakeholders and decision-makers to analyze climate effects on transporta-

tion and implement data-driven actions. 
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1. INTRODACTION 

Climate change significantly impacts transportation, disrupting public transportation due to ex-

treme weather (Gössling et al., 2023). While climate indices exist (Błażejczyk et al., 2013), the 

climate-transportation relationship remains underexplored (Wang et al., 2020). Existing causality 

models struggle with real-world network complexities (Pearl, 2009), limiting their use in Trans-

portation Management Centers (TMCs), which often rely on descriptive tools like heat maps 

(Klein, 2001; FHWA, 2018). These tools, however, often lack system-level insights (Hughes et 

al., 2020) and are insufficient for engaging non-technical stakeholders, such as TMCs staff, who 

require more intuitive and accessible representations of system behavior. Projected increases in 

extreme weather (C3S, 2024) necessitate incorporating climate forecasts into transportation op-

erations, requiring interdisciplinary collaboration (Jacobs et al., 2005). To address this, we lever-

age systems thinking to formalize causal relationships into a Hybrid Dynamical Systems Thinking 

Approach (HDSTA) (Grinberg-Rosenbaum et al., 2025), a novel framework for data-driven 
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transportation operations. HDSTA combines causality modeling, Machine Learning (ML), and 

expert insights for holistic system modeling. 

2. METHODOLOGY  

This study demonstrates the use of HDSTA through a case study analyzing interurban road (Road 

2 in Israel) users' behavior under varying climatic conditions.  

  

Conceptual Modeling  
 

As a foundational step, a knowledge graph representing a conceptual model of the case was con-

structed using Object-Process Methodology (OPM) (Dori, 1995). OPM was chosen as it can en-

code assumptions and domain knowledge about a problem, without the need to build and run a 

full simulation. The OPM outcomes describe the system’s structures by:  

(1) Object Process Diagram (OPD) - a graphical component we used to design a knowledge graph.  

(2) Object-Process Language (OPL) - a text component named we used to define and improve the 

ML causality modeling. 

 

The knowledge graph in Figure 1 represents a system-level view of the case study. This step 

involved experts from transportation, climate science and data science in an iterative process. 

During these discussions we designed the model including processes required for predicting the 

target metrics (ridership, transport volume, speed); variables influencing these metrics (e.g., 

weather conditions, time of day, day of week, events); and other necessary data.  

 

Using OPCloud as a platform to model OPM, we established the links between the identified 

processes and variables, highlighting their relevance and contribution to each stage of the system 

analysis, see Figure 1. Processes are blue ellipses and objects are green squares and can have 

indicators as quantity, states and attributes. Variables with dashed lines (as events) indicate envi-

ronmental factors external to the system; Variables with solid lines (as vehicle counts) indicate 

systemic elements within our control. The OPL text was automatically generated in OPCloud 

with colors defining processes, objects and other colors related to indexes used. OPL explains 

the case system dynamics as demonstrated below:  

 

Road 2 TMC manager exhibits Policy. Road 2 TMC manager handles Road 2 TMC operat-

ing.  Road 2 TMC operating requires Policy of Road 2 TMC manger. 

Ridership Modeling requires Boardings Historical Records, Events, and Universal Thermal 

Climate Index; Ridership Modeling yields Bus Boardings; Ridership Modeling affects Bus 

Lane Speed. 

 

Road 2 TMC operating  zooms into 3 predictive processes: Ridership Modeling, Traffic Vol-

ume Modeling, and Traffic Speed Modeling.; Bus Boardings and Boardings Historical Rec-

ords units are people per hour; Bus Lane Speed and General Lane Speed unit is km/h; Bus 

Count Records unit is buses; Vehicle Count unit is cars;  Events can be no or yes; Universal 

Thermal Climate Index can be extreme heat stress, strong heat stress, very strong heat 

stress, slight cold stress, no thermal stress or at one of five other states.  

 

Traffic Speed Modeling requires Bus Boardings, Bus Count, Events, Universal Thermal Cli-

mate Index, and Vehicle Count; Traffic Speed Modeling yields Bus Lane Speed and General 

Lane Speed;  
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Traffic Volume Modeling requires Bus Boardings, Events, and Universal Thermal Climate 

Index. Traffic Volume Modeling affects General Lane Speed. Traffic Volume Modeling 

yields Vehicle Count.  

  

 

Figure 1: HDSTA Conceptual Case Study model using OPM's OPD 

  

In Figure 2 we demonstrate a zoom in to a more detailed ridership modeling process, which is 

part of the system in Figure 1. The OPL explains:  

Ridership Modeling is done by Model Training, and Model Testing. Ridership Modeling re-

quires Bus Line, Day Phase, Events, Station Code, Universal Thermal Climate Index, and 

Week Phase; Ridership Modeling yields Bus Boardings. Week Phase can be Sunday, Tues-

day, mid-week or weekend;  Day Phase can be 00-6,12-15,15-18,18-21,21-00,6-9 or 9-12;  

Boardings Historical Records consists of Bus Line and Station Code of Bus Stop Station. Bus 

Line exhibits Direction.  Direction of Bus Line can be north or south. Events can be no or yes. 

Weather Resilience Calculating requires Boardings Historical Records, Rain, and Universal 

Thermal Climate Index. Weather Resilience Calculating yields Weather Resilience of Bus 
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Stop Station which can be cold weather resilience, hot weather resilience or rain resilience. 

Ridership Modeling affects Weather Resilience of Bus Stop Station. 

 

  

 

Figure 2: Ridership modeling zoom in using OPM's OPD 

 

Data processing 

 

In collaboration with Ayalon Highways Traffic Control Center and Israel Mobility Living Lab 

(ISMLL) which is an open data initiative, a section of 54 km long interstate Road no. 2 was 

investigated from July 2023 until August 2024. Based on the Knowledge graph in Figure 1 we 

collected data from various sources, including:  

• Speed and vehicles count were provided from AdKnight traffic sensors.  

• Bus passenger counts were obtained from Israel Transport Ministry. 

• Weather reports, including temperature, precipitation, and other relevant climatic varia-

bles, were sourced from Israel Meteorological Data-Canter API. 
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Several preprocessing steps were undertaken to ensure data quality and suitability for modeling. 

These included:  

• Normalizing the data using MinMaxScaler to scale features to a consistent range. 

• Filtering data on holidays and rows with only zeros (indicative of sensor malfunction). 

• Adding Features: Universal Thermal Climate Index (UTCI) labels were generated as a 

feature based on available weather data to represent thermal comfort. Binary variables of 

“Events” indicator (as sports games) and “Rain” (yes/no) were added.  

• Categorizing timestamp to “days of the week” and “time of the day” by similar patterns 

(such as Sunday morning, Sunday mid-day, mid-week afternoon, Thursday night etc.). 

 

To ensure comprehensive coverage of weather conditions, we analyzed hourly (x-axis) UTCI 

values (y-axis) by season (Figure 3). We can see "Moderate Heat Stress" was the dominant sum-

mer UTCI category, occurring throughout the day and night. In contrast, winter UTCI values 

reached "Strong Cold Stress" at their lowest, with most of the season exhibiting "No Thermal 

Stress". These align with Israel's Mediterranean climate. 

 

 

Summer (a) 

 

Winter (c) 

 

Spring (b) Fall (d) 

 

Figure 3: UCTI hourly distribution for July 2023-Augost 2024 by seasons (a) Summer (b) 

Spring (c) Winter (d) Fall.  

 

Quantitative modeling 

 

Based on the processes in the knowledge graph (Figure 1) we defined mathematical models using 

Structural Equation Models (SEM) and compared them to ML methods: Neural Networks (NN) 
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and XGBoost. For "Ridership Modeling" we used historical records on bus boardings and 

weather reports to predict boarding per bus station. In some weather conditions we may see 

changes in users' mode - choosing a car over a bus. Thus, if we have fewer bus passengers, we 

may see more cars on the road and vice versa. Accordingly, we assumed ridership predictions 

would affect "Transport Volume Modeling" and included it as part of the input. We used bus 

counts and predicting results of ridership and transport volume to predict "Traffic Speed model-

ing" for the general and the bus lanes assuming these effects the speed as well. 

 

For model development, the following libraries were utilized: semopy and sklearn for the SEM, 

xgboost and sklearn for the XGBoost model, and tensorflow and sklearn for NN model. The NN 

architecture consisted of an input layer followed by a dense layer with 128 nodes and a tanh 

activation function. This was followed by a normalization layer and a dropout layer with a rate of 

0.3 to prevent overfitting. A subsequent dense layer with 64 nodes and a tanh activation function, 

normalization layer, and dropout layer (rate = 0.3) led to the output layer. The dropout layers 

randomly set input units to 0 at each training step with the specified rate, scaling the remaining 

inputs by 1/(1-rate). The NN model was trained using an 80/20 train/test split (without a separate 

validation set), employing the Adam optimizer and Mean Squared Error (MSE) loss function.  

 

3. RESULTS AND DISCUSSION 

This case helps identify key relationships between variables obtained from climate and transpor-

tation sources for predictions made on ridership, vehicle count, and traffic speed.  

 

Prediction results for traffic measurements 

 

The results presented in Table 1 highlight differences in models’ performance across both road 

directions (north and south). NN outperformed SEMs in terms of R² and RMSE across all varia-

bles and directions. While XG-Boost showed competitive performance in some cases, there is 

evidence of overfitting due to high RMSE values. SEMs, on the other hand, underperformed due 

to their reliance on predefined relationships that lack flexibility to adapt to complex interactions 

in the data. The ability of NN models to capture nonlinear patterns and integrate diverse data 

sources provides a significant edge, particularly in dynamic and multifactorial domains like trans-

portation. One limitation of this case is the lack of data on accidents which may explain the NN 

models medium range values of R² (0.5-0.7). 

 

Passenger data serves as a proxy for demand which is crucial for understanding traffic dynamics. 

Their inclusion enriches the input features, allowing the model to better capture interactions be-

tween ridership, traffic volume, and speed. The results suggest that passenger predictions con-

nects system-level interactions, thereby enabling more accurate predictions and robust model gen-

eralization 
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Table 1: Results for traffic measurements predictions  

 

(a) Ridership  

 

 
(b) Vehicle counts in general lane 

* Overfitting 

(c) Speed in general lane 

 

(d) Speed in bus lane 

 

Bus stations’ weather resilience index 

Another outcome of this research is the creation of a Weather Resilience Index (WRI) to assess 

bus station vulnerability to extreme weather: hot, cold, or rainy weather. WRI was modeled as a 

feature of the bus stop station (Figure 2). Using ridership and climate data, we calculated the 

probability of ridership decline under extreme conditions (Heat, Cold, Rain) compared to normal 

weather. High positive WRI values show weather-sensitive stations, while lower values suggest 

resilience. Figure 4 presents a distinct series for each weather type. The x-axis shows the bus 

stations, with their positions reflecting their geographical locations from north to south. We can 

note rain as the dominant factor, affecting nearly all stations most significantly. Varied heat and 

cold impacts have less impact than rain. While rain is consistently dominant, some stations (e.g., 

20118, 30000, 30007) show notable heat effects, and stations 20118, 20142, and 27145 display 
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significantly higher rain sensitivity than to heat or cold. These differences between bus stations 

can be due to factors such as lack of adequate shelter or the demographics of the passengers who 

use these stations.  

 

This approach helps identify which stations may benefit most from weather-related adaptations 

and prioritize improvements according to the stations’ specific weather-related sensitivities, en-

hancing the commuting experience across all conditions. These improvements can include adding 

shelter, heating, or cooling measures to improve comfort and retain passenger numbers across 

different weather conditions. 

 

 

Figure 4: Probabilities of ridership decline under hot, cold, and rainy weather 

 

Table 2 presents the probabilities shown in Figure 4, along with bus station direction (north/south 

road) and landmark proximity.  Statistical significance was visualized using a color gradient based 

on the following scale: dark red (above 45%), red (40-45%), orange (30-40%), yellow (below 

30%). Table 2 provide further insights: 

Cold: High WRI values suggest cold sensitivity. P-values are mixed, with some stations (e.g., 

20334) showing significant effects, warranting heating/shelter solutions. 

Hot: High WRI values show heat sensitivity. Shade/cooling measures are recommended. Many 

stations show non-significant heat effects (high p-values, close to 1.0), with exceptions at stations 

26966, 20269, and 20118. 

Rain: Rain consistently and significantly (p < 0.05) impacts ridership across nearly all stations 

(high WRI values), especially 20334 and 27145, suggesting shelter improvements. 
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Table 2: Probabilities for a change in ridership under different weather conditions 

   

Stop Nu. Direction Proximity Cold Heat Rain 

20112 South Bridge 

Junction 
37.97% 

P-value: 

6.00e-19 

35.51% 

P-value: 

0.966 

38.64% 

P-value: 

2.42e-06 

20118 North Wingate 

Bridge 

Junction 

33.48% 

P-value: 

4.55e-14 

34.50% 

P-value: 

5.03e-31 

35.68% 

P-value: 

9.90e-20 

20142 South 

 

Junction 

Industrial 

area 

42.28% 

P-value: 

6.37e-05 

41.22% 

P-value: 1 

44.67% 

P-value: 

6.03e-64 

20145 North Bridge 

  
41.86% 

P-value: 

2.41e-38 

40.72% 

P-value: 1 

43.38% 

P-value: 

1.61e-38 

20146 South 

 

Bridge 

  
35.23% 

P-value: 

1.81e-48 

32.55% 

P-value: 1 

36.89% 

P-value: 

1.08e-50 

20153 North Bridge 

  
29.91% 

P-value: 

2.23e-19 

31.28% 

P-value: 

0.944 

29.74% 

P-value: 

3.44e-03 

20154 South 

 

Junction 41.65% 

P-value: 

3.35e-60 

41.01% 

P-value: 1 

43.75% 

P-value: 

1.34e-88 

20269 

 

South Industrial 

area 

Bridge 

41.12% 

P-value: 

1.19e-27 

37.23% 

P-value: 

0.044 

42.69% 

P-value: 

2.00e-38 

20312 North Junction 36.08% 

P-value: 

0.428 

37.18% 

P-value: 1 

37.52% 

P-value: 

8.52e-05 

20334 North Junction 46.58% 

P-value: 

4.33e-110 

41.43% 

P-value: 1 

45.65% 

P-value: 

1.62e-44 

20495 South Bridge 37.29% 

P-value: 

0.952 

37.78% 

P-value: 1 

38.21% 

P-value: 

6.99e-14 

26749 

  

North Cinema 

Bridge 

  

40.46% 

P-value: 

7.38e-197 

33.77% 

P-value: 1 

41.56% 

P-value: 

9.85e-108 

26966  

 

South 

 

Cinema 

Bridge 

  

41.45% 

P-value: 

3.61e-51 

39.81% 

P-value: 

3.50e-14 

43.58% 

P-value: 

6.98e-55 

27145 North Bridge 

Junction 

  

47.52% 

P-value: 

8.16e-55 

38.88% 

P-value: 1 

48.14% 

P-value: 

6.86e-31 
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Stop Nu. Direction Proximity Cold Heat Rain 

30000 South 

 

Bridge 

Bus area 

 

30.01% 

P-value: 

6.43e-13 

25.66% 

P-value: 1 

29.93% 

P-value: 

2.30e-09 

30007 North Under a 

bridge 
28.80% 

P-value: 

9.19e-03 

26.33% 

P-value: 1 

31.46% 

P-value: 

1.15e-23 

30009 South 

 

Bridge 33.47% 

P-value: 

8.56e-03 

28.99% 

P-value: 1 

33.95% 

P-value: 

5.49e-26 

 

4. CONCLUSIONS 

This study utilizes HDSTA, a method we previously developed and demonstrated, for data-driven 

transportation decision-making. This interdisciplinary approach enhances ML models, incorpo-

rating diverse measures (e.g., UTCI) for more accurate predictions and identification of actionable 

strategies to optimize transportation outcomes under varying environmental conditions. This is 

crucial due to projected increases in the frequency and severity of future climate events. Conse-

quently, vulnerability to extreme events, such as heavy rain, may also rise. 

 

The results highlight the importance of considering not only the severity of weather events but 

also their frequency and population acclimatization when assessing transportation impacts. A key 

contribution is the WRI, quantifying weather's impact on bus station ridership to support targeted, 

station-level adaptation strategies such as improved shelters, bus climate control, and schedule 

adjustments. 

 

HDSTA’s system-level modeling, demonstrated in a case study on Road 2, offers actionable in-

sights (graphical, textual, and numerical) applicable to other datasets and cases through its 

knowledge graph framework. By combining ML, expert knowledge, and systems thinking, 

HDSTA establishes a shared framework for data-driven action, enabling transportation stakehold-

ers to address climate-related challenges. Future research could investigate the socio-economic 

factors influencing station-specific weather sensitivity and explore the transferability of HDSTA 

to other transportation modes (e.g., rail, cycling). 
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