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Short summary

Daily Travel Activity Patterns (DAPs/DTAPs) are critical in transportation modelling, especially
within Activity-Based frameworks, enabling planners and policymakers optimize network perfor-
mance and operational efficiency. While multi-label classification approaches have been previously
applied for DAP prediction, the comparison of Large Language Models (LLMs) with other widely
used algorithms in this domain remains unexplored. Leveraging the strengths of LLMs in sequence
modelling and multi-label classification, this paper makes a novel contribution by implementing
and comparing several open-access LLMs for DAP prediction against traditional discrete choice
models (Multinomial Logit) and popular machine learning and deep learning algorithms. Using
the 2018 Origin-Destination Montreal travel survey data, including socio-demographic information
on over 169,000 individuals, results demonstrate that LLMs can improve prediction accuracy by
up to 3% over other methods. However, this improvement comes with significantly higher training
times, highlighting a trade-off between accuracy and computational efficiency.
Keywords: Daily Travel Activity Pattern, Activity Based Models, Large Language Models, Arti-
ficial Intelligence, Discrete Choice Models

1 Introduction

Daily travel activity patterns (DAPs/DTAPs), which describe the sequence and timing of daily
activities, are central to transportation studies, particularly in Activity-Based Modelling (ABM)
frameworks (Bowman and Ben-Akiva, 2001). Analysing DAPs reveals factors shaping travel be-
haviour, essential for predicting travel demand and developing effective transportation policies (Ki-
tamura, 1988). Traditional trip-based models, such as the widely used four-stage model (trip gen-
eration, distribution, mode choice, and assignment), predict transportation demand by analysing
trip origins and destinations (Bhat and Koppelman, 1999). These models assume independent
travel decisions, ignoring activity interdependencies, time constraints, and family dynamics (Bhat
and Koppelman, 1999; Pas, 1985), limiting their ability to capture complex travel behaviour and
leading to suboptimal policies (Bowman and Ben-Akiva, 2001).
To address these limitations, ABMs focus on individual activity patterns and decision-making
processes, considering socioeconomic factors, land use, and transportation attributes (Bhat and
Koppelman, 1999; Gärling et al., 1994). This enables more realistic representations of human
mobility, improving transportation policies and interventions (Arentze and Timmermans, 2004;
Bowman and Ben-Akiva, 2001). Some notable ABMs are Bowman’s Boston ABM (Bowman and
Ben-Akiva, 1997), CEMDAP (Bhat et al., 2004), ALBATROSS (Arentze and Timmermans, 2000),
TASHA (Roorda et al., 2008), CUSTOM (Nurul Habib, 2018), and SALT (Hafezi et al., 2021).
Generally, ABMs are classified into rule-based, utility-based, and hybrid models. Rule-based mod-
els use heuristic rules and behavioural theories like bounded rationality to simulate travel decisions
under constraints such as time availability and activity preferences (Arentze and Timmermans,
2000; Recker, 1995). Utility-based models, grounded in utility maximization, employ discrete
choice methods (DCMs) like the Multinomial Logit (MNL) and Nested Logit (NL) to predict
activity-travel behaviour (Ben-Akiva and Lerman, 1985; Allahviranloo and Recker, 2013). Hybrid
models combine rule-based and utility-based approaches, offering more comprehensive and realistic
simulations and improved predictions for transportation planning and policy analysis (Arentze and
Timmermans, 2004; Bhat and Koppelman, 1999).
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The rise of Machine Learning (ML) and Deep Learning (DL) techniques has significantly advanced
DAP modelling by enabling the capturing of complex, non-linear patterns from large datasets.
Unlike previous models, ML and DL approaches adapt to changing behaviour and offer more flex-
ible and accurate predictions (Gong et al., 2014). Therefore, researchers have been increasingly
drawn to use these techniques with diverse data sources, such as GPS, smartphones, travel sur-
veys, and smart card data. While these models excel at handling complex data, their "black-box"
nature and lack of interpretability remain significant challenges, especially when compared to the
transparency offered by traditional DCMs. ML algorithms like the Random Forest (RF), Sup-
port Vector Machines (SVM), and Gradient Boosting (GB) have demonstrated strong predictive
capabilities for DAPs. Hafezi et al. (2018) used RF models to capture activity dependencies and
socio-demographic heterogeneity, achieving high accuracy. Nayak and Pandit (2023) applied RF,
XGBoost, and LightGBM within a multi-label framework, modelling interdependencies between
weekday and weekend activities with improved validation results. Allahviranloo and Recker (2013)
employed SVMs and Hidden Markov Models to capture sequential dependencies, outperforming
traditional MNL models. Deng (2022) modelled senior DAPs using boosted C5.0 algorithms, of-
fering both accuracy and interpretability through surrogate rule-based models. In addition, DL
techniques, such as neural networks and transformer-based models, further enhance DAP predic-
tion. Wang and Osaragi (2024) showed that the Time-Varying Markov Chain (TVMC) achieved
accuracy comparable to Multi-Layer Neural Networks (MNN) while offering greater interpretabil-
ity. Phan and Vu (2021) used DL frameworks with entity embedding and domain knowledge to
classify activities and predict activity times, demonstrating the potential of DL for reliable DAP
generation.
Natural Language Processing (NLP) techniques are also excel at sequence and pattern recognition,
particularly in multi-label classification tasks (Tsoumakas and Katakis, 2007). They effectively han-
dle ordered data, such as activity sequences and time series, by uncovering contextual relationships
and extracting features from raw data. Scalable and adaptable, NLP methods are well-suited for
analysing large, complex transportation datasets (Raaijmakers, 2022; Vaswani et al., 2017). Li and
Lee (2017) developed probabilistic context-free grammars (PCFGs) to generate DAPs, effectively
capturing the complexity of activity sequences. Chen et al. (2024) combined NLP-based feature ex-
traction (Word2Vec+SIF) with clustering techniques (K-Means++) and ML algorithms to identify
detailed activity patterns. Their approach demonstrated consistency across years and robustness
for long-term predictions. Artificial Intelligence (AI) models, including ML, DL, and NLP, out-
perform DCMs in prediction tasks by handling large datasets, capturing non-linear patterns, and
achieving higher accuracy, particularly for DAP recognition (Wang et al., 2021). Although, these
models face a "black box" problem, limiting their interpretability, this can often be overlooked
since prediction accuracy and training efficiency often draw more attention.
While significant progress has been made in using AI algorithms for DAP modelling and pre-
diction, the implementation and performance comparison of various open-access Large Language
Models (LLMs) in domain has not yet been investigated, despite their success in sequence modelling
and pattern recognition. It should be noted that traditional sequence models, such as Recurrent
Neural Networks (RNNs) (Graves et al., 2013) and Long Short-Term Memory (LSTM) networks
Hochreiter and Schmidhuber (1997), excel at capturing temporal dependencies but require large
sequential datasets for effective training and often face challenges like vanishing gradients, making
them unsuitable for this task (Hochreiter and Schmidhuber, 1997). In contrast, LLMs, offer sig-
nificant advantages over traditional NLP techniques. LLMs are pre-trained on vast corpora using
advanced transformer architectures, enabling them to model long-range dependencies, capture rich
contextual relationships, and perform well with smaller datasets through fine-tuning (Chen et al.,
2024; Vaswani et al., 2017; Devlin et al., 2018). Their ability to capture complex dependencies in
data, whether through bidirectional contextual embeddings or unidirectional sequence modelling,
makes them particularly effective for tasks like multi-label classification (Niraula et al., 2024).
The purpose of this study is to implement and compare a range of open-access LLMs, including
both bidirectional and unidirectional models, using multi-label classification approaches to predict
individual DAPs based on socio-demographic information. The 2018 Origin-Destination (OD)
Montreal Travel Survey dataset, which contains personal, household, and travel information for
approximately 169,000 individuals, is used as a case study. To evaluate the performance of LLMs,
a comprehensive comparison is conducted against ML algorithms, including RF, SVM, and GB, as
well as a DL model (MNN) and a DCM (MNL). Additionally, the relationships between different
activities, previously analysed using techniques like Hidden Markov Models (Allahviranloo and
Recker, 2013) or Markov chains (Wang and Osaragi, 2024), are modelled using classifier chains,
which are well-suited for multi-label classification problems.
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2 Methodology

The purpose of this study is to explore the ability to improve DAP prediction by using LLM models
compared to existing methods. The framework’s steps are described in detail below.

Case Study

The 2018 OD Montreal Travel Survey was chosen for its comprehensive data on daily travel be-
haviours (Autorité régionale de transport métropolitain, 2018). Conducted from September to
December 2018, it covered households in Greater Montreal to support planning and infrastructure
development. Stratified sampling divided the area into 113 strata based on 2016 census data, ensur-
ing demographic and spatial representation. Figure 1 shows the dispersion of surveyed household
locations. The survey gathered data from 73,400 households, capturing 357,798 valid movements
from 168,883 individuals. Its large sample size offers a significant advantage over previous studies.
This analysis focuses on individuals making 0 to 5 daily trips, representing 95% of the sample
(163,122 individuals). Figure 2 displays the histogram of individuals with various daily trip num-
bers. Finally, dataset variables are grouped into Household, Personal, and Movement categories.
For model training, commonly used variables relevant to DAP prediction were selected. Table 1
details the chosen variables, including their categories, names, descriptions, and types.

Figure 1: Dispersion of the recorded household locations in the dataset

Figure 2: Histogram of the recorded daily trip numbers of individuals in the dataset
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Table 1: Information of the Chosen variables in the dataset
Category Feature Feature Description Type

Household

m_fexp Expansion factor based on households Continues Numerical

m_auto Number of vehicles in the household
(0 to 14) Discrete Numerical

m_pers Number of people in the household
(1 to 19) Discrete Numerical

m_domsm Municipal sector
(113 municipal sectors) Categorical

m_domlon Longitude of the household location Continues Numerical
m_domlat Latitude of the household location Continues Numerical

Personal

p_fexp Weighting factor based on people Continues Numerical

p_sexe Sex of the person
(1: male, 2: female) Categorical

p_grage

Age group of the person
(1: 0 to 4 years, 2: 5 to 9 years,
3: 10 to 14 years, 4: 15 to 19 years,
5: 20 to 24 years, 6: 25 to 34 years,
7: 35 to 44 years, 8: 45 to 54 years,
9: 55 to 64 years, 10: 65 to 74 years,
11: 75 and older)

Categorical

p_age Age of the person
(1 to 99) Discrete Numerical

p_statut

Main occupation of the person
(1: Full-time worker, 2: Part-time worker,
3: Student/pupil, 4: Retired, 5: Other,
6: N/A: child under 4 years old, 7: At home,
8: Refusal)

Categorical

p_permis
Possession of a driver’s license:
(1: Yes, 2: No, 3: Don’t know, 4: Refusal,
5: Not applicable (under 16 years old))

Categorical

p_mobil

Mobility of the person:
(1: Yes, 2: No, did not move,
3: N/A: child under 4 years old,
4: Don’t know, 5: Refusal,
6: Moved, don’t know how)

Categorical

Movement num_trps Number of daily trips Discrete Numerical

d_motif

Reason for the movement:
(Category 0- No trip/staying home [0: No trip],
Category 1- Mandatory activities [1: Work,
4: School], Category 2- Maintenance activities
[2: Business meeting, 5: Shopping, 8: Health],
Category 3- Discretionary activities [3: On the
road, 6: Leisure, 7: Visit friends/relatives,
9: Look for someone, 10: Pickup someone,
12: Other], Category 4- Home [11: Return to Home])

Categorical

DAP preparation and representation

Since DAPs are not directly recorded in the dataset, they are represented as target variables
for modelling using two approaches: pur_pat_0 and pur_pat_1. The pur_pat_0 representation
includes 13 detailed trip purpose categories, enabling granular analysis, while pur_pat_1 simplifies
these into 5 generalized groups: (0) no trip, (1) mandatory, (2) maintenance, (3) discretionary,
and (4) return home (Bhat and Koppelman, 1999; Phan and Vu, 2021), as shown in Table 1. The
simplified pur_pat_1 approach supports behavioural insights and travel demand modelling by
standardizing trip purposes and highlighting patterns such as the rigidity of work trips versus the
flexibility of leisure trips (Allahviranloo and Recker, 2013; Hafezi et al., 2018; Chen et al., 2024).
In this research, only individuals with fewer than six daily trips are included. Therefore, DAPs are
represented as fixed-size vectors of 5 labels, with values depending on the chosen representation.
For instance, an individual with four trips categorized as shopping, visiting friends, leisure, and
returning home would have a DAP vector of [5, 7, 6, 11, 0] in pur_pat_0 and [2, 3, 3, 4, 0] in
pur_pat_1. The reduced complexity and fewer categories in pur_pat_1 are expected to result in
higher prediction accuracies compared to pur_pat_0.
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Model Selection

The purpose of this study is to evaluate a range of open-access LLMs, including both bidirectional
models such as BERT (Devlin et al., 2018), DistilBERT (Sanh et al., 2019), ALBERT (Lan et al.,
2019), RoBERTa (Liu et al., 2019), XLNet (Yang et al., 2019), and T5 (Raffel et al., 2020), as well
as unidirectional models such as BLOOM (Le Scao et al., 2023), Falcon (Gao et al., 2024), and
LLaMA 2 (Touvron et al., 2023).
These transformer-based models process sequential data through tokenization, embedding layers,
and attention mechanisms to capture local and global relationships. Bidirectional models, such as
BERT, use tasks like Masked Language Modelling (MLM) and Next Sentence Prediction (NSP)
for pre-training (Devlin et al., 2018), capturing both past and future context. Unidirectional
models, like LLaMA 2, employ causal (auto-regressive) learning to predict the next token, offering
faster and more efficient computation (Touvron et al., 2023). During fine-tuning, task-specific
layers adapt these models for multi-label classification problems, enabling effective processing of
sequential data for diverse applications. Each LLM has unique strengths, reflecting a trade-off
between contextual understanding and computational efficiency. Bidirectional models excel in
interpreting complex activity relationships, while unidirectional models are more efficient for tasks
with sequential dependencies or computational constraints.
Finally, widely used ML models like RF, SVM, and GB are included for their proven suitability in
DAP prediction, along with the DL model MNN to capture non-linear relationships. The bench-
mark MNL model is also used for its interpretability and decision-making focus. This evaluation
contextualizes LLM performance against existing models, highlighting their potential advantages.

Preprocessing and Training the models

Preprocessing varies by algorithm. For ML models and MNN, categorical and numerical fea-
tures are standardized using OneHotEncoder and StandardScaler from scikit-learn (Scikit-learn
developers, 2023). For LLMs, text features are tokenized using transformers library tokenizers
(HuggingFace, 2023) and converted into numerical format. For the MNL model, alternatives and
input variables are defined using Biogeme library (Bierlaire, 2023).
The dataset is split into train (70%), validation (15%), and test (15%) sets, with validation used to
monitor over-fitting and test for final evaluation. Sequential trip relationships are modelled using
classifier chains, where previous predictions inform subsequent ones, enhancing accuracy despite
increased training time.
Training employs scikit-learn for ML models, TensorFlow (Abadi et al., 2016) for MNN, transform-
ers for LLMs, and Biogeme for MNL. The hyper-parameters are optimized using GridSearchCV for
ML models and MNN, and Optuna (Team, 2023) for LLMs. MNL variables are refined based on t-
test significance and coefficients, excluding low-significance or non-meaningful coefficients variables
for better reliability and interpretability.

Model Evaluation

This study proposes two evaluation approaches: vector-based accuracy and unit-based accuracy.
Since the target is a vector of categorical labels, categorical cross-entropy is used for accuracy
calculations. In the vector-based approach, all labels in an individual’s vector must be predicted
correctly; a single incorrect label results in the entire vector being considered a false prediction.
In contrast, unit-based accuracy calculates the mean correctness of predicted labels within a DAP.
For example, if two out of five labels are incorrect, the vector’s accuracy would be 0% in the
vector-based approach but 60% in the unit-based approach.
These evaluation methods assess model performance based on the order of trips, trip purpose
categories, and individuals with varying numbers of daily trips, under the two mentioned DAP
representation methods. Since unit-based accuracy is more lenient, it is expected to yield higher
values than vector-based accuracy. A summary of the framework is provided in Figure 3.

5



Figure 3: Proposed framework used in this study

3 Results and Discussion

This ongoing project requires additional time to implement T5, BLOOM, Falcon, and LLaMA
2 due to their high training costs and numerous scenarios, which will be analysed in the coming
months. Consequently, the current analysis focuses on the remaining algorithms. Table 2 compares
their performance, assessing runtime and accuracy (vec_acc and unit_acc) under two DAP repre-
sentation methods. The evaluation includes total observations, trip order, trip purpose categories,
and daily trip counts, with pur_pat_1 highlighted in some scenarios due to word limits. Notably,
MNL was not implemented for pur_pat_0 due to its computational complexity, underscoring its
limitations with more complex representations.

Running time: Training times vary notably between pur_pat_1 and pur_pat_0, reflecting
differing complexities. SVM is the fastest overall, completing pur_pat_1 in 32.88 seconds and
pur_pat_0 in 81.24 seconds, while MNL is the slowest, requiring 42,096.96 seconds and even
longer for pur_pat_0. Among LLMs, DistilBERT is the quickest (8,608.8 seconds for pur_pat_1
and 12,169.58 seconds for pur_pat_0), with XLNet the slowest.

Total Accuracy: The results highlight three key trends: (1) all models achieve higher accuracy
under pur_pat_1 than pur_pat_0, reflecting the reduced complexity of the simpler representation;
(2) unit-based accuracy (unit_acc) surpasses vector-based accuracy (vec_acc), as vec_acc requires
perfect label prediction, making it more challenging; and (3) LLMs, particularly RoBERTa, deliver
higher accuracy in most scenarios due to their advanced contextual modelling.
For vec_acc (Figure 4), RoBERTa consistently leads, achieving 74.10% for pur_pat_1 and 68.35%
for pur_pat_0. For unit_acc (Figure 5), models perform better overall, with RoBERTa scoring
highest under both representations (92.77% for pur_pat_1 and 91.15% for pur_pat_0). While
RoBERTa and other LLMs achieve marginally better total accuracy, traditional models like MNN
and GB offer slightly lower performance but significantly faster training. This highlights a trade-
off between training time and accuracy, making traditional AI models more efficient for certain
applications.

Based on the order of the trips: Figure 6 illustrates model accuracy (unit_acc) by trip
order under pur_pat_1, with accuracy rising from 79–82% for the first trip to over 99% by the
fifth. RoBERTa starts and finishes with the highest accuracy, exceeding 99%. MNN outperforms
others for the second, third, and fourth trips, achieving 91.67%, 93%, and 98.73%, respectively,
while RoBERTa remains competitive. Accuracy improves across all models as trip order increases,
driven by narrowing trip category distributions and classifier chains leveraging logical relationships
between trips.
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Table 2: Performance of the models in different scenarios
DAP

Representation
method

Evaluation
Metric

Number of
observations

Model
LLM ML DL Discrete Choice

BERT ALBERT DistilBERT RoBERTa XLNet RF SVM GB MNN MNL

pur_pat_1

Run_Time 24469 (all) 19871.28 11612.16 8608.8 19577.28 26003.64 106.92 32.88 286.44 433.44 42096.96
Vec_Acc 24469 73.40% 73.75% 73.60% 74.10% 73.50% 71.47% 70.53% 72.53% 72.47% 71.45%
Unit_Acc 24469 92.64% 92.66% 92.61% 92.77% 92.52% 91.77% 90.55% 92.59% 92.51% 92.51%

Based on
the order
of the trips

Trip 1 24469 81.40% 81.30% 81.50% 81.85% 81.25% 80.07% 79.93% 79.60% 80.47% 79.25%
Trip 2 24469 90.85% 91.00% 90.90% 91.00% 90.50% 90.47% 88.20% 91.67% 90.20% 91.50%
Trip 3 24469 92.60% 92.65% 92.30% 92.65% 92.50% 90.20% 85.73% 93.00% 93.00% 92.85%
Trip 4 24469 98.40% 98.40% 98.40% 98.40% 98.40% 98.20% 98.93% 98.73% 98.93% 99.05%
Trip 5 24469 99.95% 99.95% 99.95% 99.95% 99.95% 99.93% 99.93% 99.93% 99.93% 99.90%

Based on
the trip
categories

Cat 0 74489 100.00% 100.00% 100.00% 100.00% 100.00% 99.98% 100.00% 100.00% 100.00% 100.00%
Cat 1 13058 87.45% 88.29% 87.92% 88.38% 86.52% 90.34% 91.12% 89.30% 89.69% 88.34%
Cat 2 5618 37.45% 43.10% 37.24% 42.68% 47.70% 33.14% 39.05% 40.53% 44.08% 46.55%
Cat 3 7783 57.93% 53.51% 58.69% 54.42% 50.76% 44.88% 34.20% 46.41% 43.14% 44.38%
Cat 4 21400 98.47% 98.17% 97.76% 98.53% 98.23% 95.17% 89.80% 97.93% 97.47% 97.99%

Based on
the number
of daily trips
(vec_acc)

0-1 trips 5898 96.48% 95.86% 96.69% 96.69% 95.86% 96.61% 94.52% 96.08% 96.61% 91.49%
2 trips 12762 82.71% 82.71% 82.71% 82.80% 82.71% 79.23% 80.52% 79.23% 80.26% 80.06%
3 trips 2087 34.12% 39.41% 34.71% 39.41% 35.29% 23.21% 0.89% 32.14% 17.86% 29.33%
4 trips 3038 32.40% 33.20% 33.20% 33.60% 34.00% 31.31% 35.35% 34.34% 37.37% 34.62%
5 trips 684 3.57% 1.79% 3.57% 3.57% 1.79% 0.00% 3.13% 6.25% 3.13% 4.26%

Based on
the number
of daily trips
(unit_acc)

0-1 trips 5898 99.30% 99.17% 99.34% 99.34% 99.17% 99.32% 98.90% 99.22% 99.32% 98.30%
2 trips 12762 96.48% 96.48% 96.48% 96.50% 96.50% 95.77% 96.03% 95.74% 95.97% 95.92%
3 trips 2087 81.76% 82.00% 81.76% 82.24% 80.59% 72.68% 53.21% 81.25% 77.14% 79.47%
4 trips 3038 79.52% 79.84% 79.76% 79.92% 80.32% 80.20% 81.11% 80.51% 81.82% 81.77%
5 trips 684 55.36% 55.00% 52.86% 56.07% 51.79% 43.13% 46.88% 51.25% 46.88% 56.17%

pur_pat_0

Run_Time 24469 22850.45 21623.84 12169.58 23431.98 29511.27 156.60 81.24 1091.30 496.06

NA

Vec_Acc 24469 68.00% 68.15% 68.15% 68.35% 68.30% 66.07% 66.33% 66.67% 66.93%
Unit_Acc 24469 90.83% 90.94% 90.94% 91.15% 90.97% 90.01% 89.88% 90.49% 90.85%

Based on
the order
of the trips

Trip 1 24469 78.75% 78.95% 78.95% 79.20% 79.00% 76.93% 77.47% 76.13% 78.00%
Trip 2 24469 88.60% 88.50% 88.50% 88.80% 88.60% 88.93% 88.20% 89.60% 89.13%
Trip 3 24469 88.95% 89.05% 89.05% 89.55% 89.05% 86.60% 85.53% 88.47% 88.73%
Trip 4 24469 97.90% 98.25% 98.25% 98.25% 98.25% 97.80% 98.27% 98.33% 98.47%
Trip 5 24469 99.95% 99.95% 99.95% 99.95% 99.95% 99.80% 99.93% 99.93% 99.93%

Based on
the number
of daily trips
(vec_acc)

0-1 trips 5898 95.24% 95.24% 95.24% 96.27% 96.27% 96.61% 95.56% 95.82% 95.56%
2 trips 12762 79.35% 79.35% 79.35% 79.35% 79.25% 74.97% 76.65% 74.58% 76.90%
3 trips 2087 16.47% 16.47% 16.47% 16.47% 15.88% 6.25% 0.00% 16.96% 6.25%
4 trips 3038 18.40% 19.60% 19.60% 19.20% 18.40% 16.67% 17.68% 17.68% 17.68%
5 trips 684 0.00% 0.00% 0.00% 0.00% 5.36% 0.00% 0.00% 3.13% 0.00%

Based on
the number
of daily trips
(unit_acc)

0-1 trips 5898 99.05% 99.05% 99.05% 99.25% 99.25% 99.32% 99.11% 99.16% 99.11%
2 trips 12762 95.81% 95.81% 95.81% 95.81% 95.79% 94.92% 95.25% 94.81% 95.30%
3 trips 2087 76.00% 76.00% 76.00% 76.12% 75.88% 68.39% 63.21% 75.89% 73.93%
4 trips 3038 73.60% 73.68% 73.68% 74.56% 73.68% 73.74% 74.14% 73.23% 74.75%
5 trips 684 49.29% 52.86% 52.86% 54.29% 52.86% 36.25% 40.00% 40.00% 43.13%
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Figure 4: Total vec_acc of the models

Figure 5: Total unit_acc of the models

Figure 6: unit_acc of the models based on the order of the trips under pur_pat_1
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Based on the trip categories: Figure 7 shows unit_acc by trip purpose under pur_pat_1.
All models achieved perfect accuracy for "No Trip." MNN led in "Mandatory activities" (89.69%),
MNL in "Maintenance" (46.55%), and RoBERTa in "Discretionary" (54.42%) and "Home" (98.53%).
Lower observation counts for "Maintenance" and "Discretionary" activities (Table 2) posed chal-
lenges for all models. RoBERTa stood out as the best overall, excelling in "No Trip," "Discre-
tionary," and "Home," while remaining competitive in other categories.

Figure 7: unit_acc of the models based on the trip purposes under pur_pat_1

Based on the daily trip number: Figures 8 and 9 display vec_acc and unit_acc by
individuals’ daily trip numbers (0-1, 2, 3, 4, 5 trips) under pur_pat_1. In vec_acc, all models
perform well for "0-1 trips," with RoBERTa leading at 96.69%. Accuracy declines as trips increase,
with RoBERTa highest for "2 trips" (82.80%) and "3 trips" (39.41%), MNN best for "4 trips"
(37.37%), and GB for "5 trips" (6.25%). In unit_acc, RoBERTa excels for all trip numbers except
"4 trips," achieving 99.34% for "0-1 trips," 96.50% for "2 trips," 82.24% for "3 trips," and 56.07%
for "5 trips." MNN leads for "4 trips" with 81.82%. Accuracy decreases for "3 trips" and "5 trips"
due to fewer observations (Table 2). Both graphs highlight RoBERTa’s dominance and the general
decline in accuracy as trip numbers rise.
In summary, selecting an algorithm for DAP prediction involves balancing accuracy, training time,
and interpretability. RoBERTa achieves the highest accuracy but has long training times, while
traditional ML and DL models offer faster training with slightly lower accuracy. AI models out-
perform MNL in both accuracy and speed, making them more efficient for most applications. For
interpretability, however, MNL remains the only option despite its high computational cost. This
highlights the trade-off between precision, efficiency, and interpretability in algorithm selection.

Figure 8: vec_acc of the models based on the daily trip numbers under pur_pat_1
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Figure 9: unit_acc of the models based on the daily trip numbers under pur_pat_1

4 Conclusions

This study explored the use of several open-source LLMs for predicting DAPs of approximately
169,000 individuals using socio-demographic data from the 2018 OD Montreal Travel Survey. The
key contribution lies in a systematic and comprehensive comparison of open-source LLMs with tra-
ditional theory-driven and AI-driven ML and DL models, using a multi-label classification approach
that to the best of our knowledge, has not been previously applied to LLMs. DAPs represented
by two methods (pur_pat_1 and pur_pat_0), focusing primarily on pur_pat_1 for its reduced
complexity. Classifier chains were used to model trip relationships, and models were assessed using
vector-based and unit-based accuracies.
Among all models, RoBERTa achieved the highest predictive accuracy across most scenarios, out-
performing both traditional models and other LLMs, considering that T5, BLOOM, Falcon, and
LLaMA 2, will be analysed in the upcoming months. However, the improvement over traditional AI
models was marginal, up to 3% under pur_pat_1 and 2% under pur_pat_0, respectively. DCMs
like MNL are interpretable but require extensive training time and simplification, limiting scala-
bility. ML and DL models are faster and accurate but lack interpretability. LLMs, while slower,
offer marginally better accuracy due to advanced contextual modelling. The choice of algorithm
depends on project priorities: interpretability, efficiency, or accuracy.
For future research, it is crucial to evaluate these models on diverse datasets to capture variations
in activity patterns across different cities. Further studies should explore alternative approaches,
such as modelling the entire DAP vector as a single target instead of relying on classifier chains.
Integrating LLMs with additional datasets—such as geospatial, sensor, or social media data—or
combining them with advanced methodologies like survival analysis or competing risk models
could significantly enhance DAP prediction accuracy. Additionally, examining temporal dynamics,
including seasonal variations and long-term trends, offers a promising direction for understanding
and improving activity pattern recognition.
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