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Abstract
The rapid growth of electric vehicles (EVs) necessitates efficient charging infrastructure
planning, considering existing facilities. In urban contexts, EV charging times depend on
activity durations rather than charging time itself. Considering both effects, this study
proposes a sequential, two-step urban EV charger allocation framework. Step 1 uses a
modified K-means algorithm to identify candidate locations, incorporating activity locations,
participations, and durations. Step 2 employs metamodel-based optimization to allocate
charger types and plug counts under setup, operational budget, and power constraints to the
candidate locations. Applied to a 10% MATSim Montreal scenario with 74,542 EV users
with only 1,392 public chargers, the framework reduced average peak-hour queues by 21%
from the benchmark while respecting 60% increases in setup, operational, and power budgets.
Results highlight a preference for deploying more slow chargers over fewer fast chargers in
this high-demand scenario. Demand elasticity was observed, suggesting the need for improved
behavioral modeling.
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1 Introduction
Electric vehicles (EVs), with zero runtime emissions and higher energy efficiency than gasoline
vehicles (1.5 km/mj vs. 0.28 km/mj) (Nie & Ghamami 2013), are increasingly adopted to
reduce carbon emissions. In Canada, EV ownership grew sixfold from 2015 to 2018, driven by
incentives like tax breaks, priority lanes, and free charging (Agency 2021), while Quebec aims
for over 90% EV penetration by 2030 (Finance 2020). Advances in battery technology, rising
demand, emission goals, and regulations have prioritized electrification for the automotive
industry (Zhao et al. 2024, Csiszár et al. 2019, Li et al. 2021).

Despite advancements, the unavailability of charging infrastructure remains a critical
deterrent to EV adoption (Bailey et al. 2024). Therefore, effective planning is essential for EV
infrastructure. In urban settings, charging is linked to Individuals’ daily activities governing
charging start times and durations. This link of activities with charging patterns in urban
settings is well recognized in EV simulation literature (Gharbaoui et al. 2013, Liu et al. 2022).
However, very few literature applied activity-based charging logic in EV infrastructure planning.
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Zhang et al. (2020) used an activity-based traffic model with K-means clustering to identify
charger locations for a ridesharing fleet but focused only on spatial distances, neglecting
queuing times, connection durations, and energy served. Csiszár et al. (2019) optimized
charger placement using land-use data to identify activity hotspots but ignored temporal
demand variations and activity durations. None explicitly address activity-governed charging
in EV infrastructure planning. Existing charging facilities were also not considered in most
charger location choice literature, a crucial step for sequential charging network development.
This study addresses these gaps with a sequential charger placement algorithm that explicitly
considers existing infrastructure.

As for the location choice model, existing literature has broadly approached the problem
using two primary design principles: demand-based charger allocation and flow-capturing
charger allocation. Demand-based methods focus on satisfying the estimated charging demand
from simulations or data-driven models (Frade et al. 2011, Zhang et al. 2020). On the other
hand, flow-capturing methods prioritize strategically locating chargers to maximize accessibility
and coverage (Kuby & Lim 2005, Csiszár et al. 2019). As both approaches address key aspects
of EV users’ behavior and charging dynamics, in this study, we combine these approaches into
a multi-step framework.

Given the above literature landscape, this paper proposes a two-step, activity-driven,
sequential charger allocation framework in the urban context, combining both demand-satisfying
and flow-capturing approaches for EV charger location choice problem.

2 Problem statement
This study aims to reduce charging queues within budgetary and power constraints. i ∈ I is
defined as candidate spots and j ∈ J as current charger locations, with Qi and Vi representing
average queue and power draw per plug at i. Decision variables xi and pi denote charger type
and plug count at i, while xj and pj represent the same for existing chargers j. Setup and
operation costs are Cs,x and Co,x, bounded by budgets Bs and Bo. Zones are denoted by z and
Iz and Jz are sets of candidate and current charger locations in z. With that, the problem can
be formulated as below.

minxi,pi

1

|I|+ |J |

∑
i∈I

Qi +
∑
j∈J

Qj

 ; ∀i ∈ I

xi, xj ∈ X {Level 1, Level 2 or Fast}
pi, pj ∈ P {0, 1, 2, ..., pmax}

s.t.∑
i∈I

pi × Co,xi +
∑
j∈J

pj × Co,xi ≤ Co∑
i∈I

pi × Cs,xi ≤ Cs∑
i∈Iz

Vi +
∑
j∈Jz

Vj ≤ Vz; ∀z ∈ Z

(1)

We use Micro Agent Traffic Simulation, i.e., MATSim for simulating electric vehicle charging
in the proposed urban context.
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3 Methodological Framework
We propose a two-step, sequential charger location estimation framework. The first step
identifies candidate charger locations (I) using a modified K-means algorithm, which maximizes
the capture of agent activity locations and durations while accounting for existing facilities.
The second step involves a single-shot physical metamodel-based optimization to determine the
optimal locations and plug counts for the new charger facilities satisfying the demand. Finally,
the results are analyzed and evaluated within the original simulator, as illustrated in Figure 1.

Figure 1: Schematics of the proposed charger location estimation algorithm.

3.1 Step 1: Modified K-Means Algorithm
The modified K-mean algorithm reduces the solution space by identifying candidate charger
locations (hotspots). The algorithm processes two types of clusters: dynamic (candidate
locations) and static (preexisting chargers). During training, only the dynamic centroids are
updated snapping to the nearest activity facility location. Feature vectors include location
coordinates, user counts, and optionally activity durations, favoring high-activity areas. The
number of candidate locations and hence the dimensions of the step 2 problem are configured
in this step.

3.2 Step 2: Metamodel development and optimization
step 2 solves the optimization problem presented in equation 1 except the queue and power
draw for chargers at locations i ∈ I and j ∈ J are approximated using a problem-specific
Demand Allocation metamodel. This is because the urbanEV module of MATSim (Bakhtiari
et al. 2024) that we employ to simulate EV charging, usage, and discharging in urban settings
has a high computational cost. Directly optimizing 1, a combinatorial optimization problem
with high-dimensional mixed-integer variables and nonlinear constraints with MATSim in the
objective is infeasible. We use a single-shot, problem-specific metamodel that approximates
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Figure 2: Wardrop’s Equilibrium in the Demand Allocation Model

MATSim’s outputs during optimization. This metamodel simplifies problem dynamics while
preserving MATSim’s behavioral parameters for consistency. Further manual parameter tuning
can be performed to ensure alignment with the original simulator.

3.3 Demand Allocation Metamodel Formulation
For each location in a given solution [X,P ], the metamodel approximates three outcomes for
charger demand allocation: demand per charger (qi,qj), average intended charging duration
(t0,i, t0,j), and average charging time ti, tj . The intended duration t0,i reflects users’ desired
charging time, while the actual duration ti includes delays, analogous to free flow vs. actual
travel time in static traffic models. These terms are interdependent: demand (q) affects queue
time (t), which influences charger choice probabilities, in turn shaping intended durations (t0)
and peak hour demands as shown in figure 2. This cyclic dependency creates a Wardrops
equilibrium.

For facility f , this choice set is defined by If : di,f ≤ dmax. Then, the probability of choosing
charger i from facility f , ωf,i is calculated using the logit model and can be written as follows.
Here the utility includes queue time (ti − ti,0), distance df,i, charging cost ci if any, and the
obtained charge to battery capacity ratio t0,i vxi

b for determining the attractiveness of a charger.

ωf,i =
eηUf,i∑

i′∈If e
ηUf,i′

Uf,i = βt × (ti − t0,i) + βd × df,i + βm × ci

+ βr ×min(
t0,i vxi

b
, 1)

(2)

Queuing effects are captured while calculating ti from t0,i using the volume delay function
as below. Here, α and γ controls the smoothness of the curve. In our experiments, α = 0.15
and γ = 1.

ti = t0,i

{
1 + α×

(
qi ×min(t0,i, 3600)

3600× pi

)γ}
(3)

After calculating the utility and charger choice probability, we can get hourly demand for
a charger from surrounding facilities using equation 4. Here, facility demand is multiplied by
the facility to charger probability and ρ, the peak hour factor taken as 0.12. Weighted average
durations from these facilities according to their hourly demand give the hourly intended
charging duration as shown in equation 5.
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qi,h =
∑
f∈F

ρωf,i qf δf,h (4)

t0,i,h =

∑
f∈F ρωf,i qf δf,h t0,f∑

f∈F ρωf,i qf δf,h
(5)

Finally, the maximum of these hourly demands (qi,h) is chosen as the design charger demand
qi and the corresponding average intended charging duration is chosen as the intended charging
duration for that charger and for that demand. The process is expressed in mathematical form
as shown in equation 6.

qi = maxh∈H qi,h

t0,i = t0,i,h∗ ;h∗ = argmaxh∈H(qi,h)
(6)

The cyclic dependencies among the system of equations 2-6 create a stochastic user
equilibrium. We solve this system of equations using the accelerated method of successive
average (AMSA) proposed by Liu et al. (2009). Once the equilibrium is solved, the hourly energy
draw per zone (Vz,h) can be calculated by summing up the hourly charger power draws Vi,h for
chargers in that zone. The maximum value among the hourly power draw is the maximum
energy draw per zone Vz. This value will be used to calculate the zonal power constraints. The
process is explained mathematically in equation 7.

Vi,h = max(b, t0,i,h ∗ vxi ∗ qi,h)

Vz,h =
∑

i∈Iz∪Jz

Vi,h
(7)

3.4 Metamodel Optimization
With the above formulations, the objective in equation 1 can be reformulated as below.

minxi,pi

1

|I|+ |J |

∑
i∈I

(ti − t0,i) +
∑
j∈J

(tj − t0,j)

 ; ∀i ∈ I

xi, xj ∈ X {Level 1, Level 2 or Fast}
pi, pj ∈ P {0, 1, 2, ..., pmax}

s.t. ∑
i∈I∪J

pi × Co,xi ≤ Bo∑
i∈I

pi × Cs,xi ≤ Bs

maxh∈H(Vz,h) ≤ Vz; ∀z ∈ Z

(8)

We used OPT4J a library in JAVA specialized for meta heuristics optimization for solving our
problem. The evolutionary algorithm in OPT4J supports nonlinear large-dimension problems,
however, with an 11s runtime of the metamodel, we had to keep the maximum budget of 10,000
evaluations. GA does not support constrained optimization directly. Hence, the nonlinear i.e.,
the zonal power constraint was moved to the objective as below.
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minxi,pi

1

|I|+ |J |

∑
i∈I

(ti − t0,i) +
∑
j∈J

(tj − t0,j)

+

λ×min {maxh∈H(Vz,h)− Vz, 0} ; ∀i ∈ I

xi, xj ∈ X {Level 1, Level 2 or Fast}
pi, pj ∈ P {0, 1, 2, ..., pmax}

(9)

λ here denotes the weight to prioritize constraints satisfaction vs objective minimization. In our
experiments, we choose λ = 1. With a vast solution space most of which violates the budget
and power limit constraints, we found that it is beneficial both in terms of convergence rate and
objective quality to put the budget constraint in the random solution generation process rather
than in the objective.

4 Experimental Setup and Results
4.1 Scenario Description
The experimental setup uses a 10% Montreal scenario (Bakhtiari et al. 2024) with 297,128
individuals, 25% of them EV owners, 1,392 existing public chargers, and no home chargers,
creating a high-demand context to rigorously test the framework. The EV penetration rate of
25% aligns with Quebec’s rapid adoption trend, despite exceeding Canada’s 2023 national EV
rate of 1.3%. Charger setup costs are $5k, $10k, and $20k per plug for Level 1, 2, and Fast
chargers, with operation costs at $200, $400, and $800 per plug, respectively. Budget constraints
limit setup costs to 60% and operation costs to 160% of current facility expenses. The network
is divided into six zones, each with a power draw limit of 1.6 times the current draw. Step 1
evaluated 2,500 potential hotspots, including 1,392 fixed charger locations, resulting in 2,216
decision variables.

4.2 Step 1: Modified K-mean Algorithm Results
Figure 3 illustrates the outcomes of Step 1 for two different feature configurations. In the first
case, the k-means algorithm used only location and facility usage data as input features. In
the second case, the modified k-means algorithm incorporated location, facility usage, and the
average activity duration of EV users into the feature set. Facility usage intuitively guides
cluster centroids toward high-demand facilities and activity duration tends to guide centroids
in long-duration activities, typically home.

To further evaluate the impact of the feature vector configurations, we assigned fast chargers
with 10 plugs to all candidate charger locations generated by both configurations and ran the
MATSim urban EV scenario to observe the outcomes. Figure 4 presents the total number of
vehicles plugged in and queued throughout the day for both feature configurations, providing
insights into their performance under identical resource allocation. The results indicate that,
for similar resource allocation, the peak hour vehicle plug-in count was slightly higher and
the number of queued vehicles was slightly lower when activity duration was included in the
feature vector compared to when it was excluded. The number of agents unable to find chargers
near their vicinity was 350 versus 650 out of 25,000 requests likely due to more balanced charger
distribution between residential and non-residential areas when duration is excluded vs included.
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(a) (b)

Figure 3: Existing and potential charger facilities among activity facilities for different feature
vector configuration (a) Montreal network and (b) Zoomed-in portion of Montreal network

Figure 4: Vehicle plugged and queued in MATSim urban EV scenario for different feature
configuration
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4.3 Step 2: Metamodel Optimization Results
In the optimization phase, the study evaluated a base scenario with 1,391 public chargers
serving 75,000 EV users, revealing a severe supply-demand mismatch with an average peak-hour
queue of 36.2 hours in the metamodel’s volume delay function. Multiple random assignments
of plugs and charger types were tested across 25 scenarios, utilizing the full budget. The
average peak-hour queue for the 25 random scenarios utilizing the full budget dropped to
27.3 hours, establishing a benchmark for the optimization algorithm. Finally, the proposed
optimization framework achieved a 21% improvement over the benchmark, reducing the
average peak-hour queue to 21.47 hours after 500 generations of the genetic algorithm. Figure 5
illustrates the convergence process over successive iterations. Figure 6 illustrates the optimized
solution, which deployed more plugs than the original scenario while using only 60% of the
budget. The algorithm prioritized plug quantity over higher-power chargers, aligning with the
activity-driven charging behavior model.

Figure 7 shows the spatial distribution of optimized chargers, with dot size indicating
plug count. The solution favors Level 1 chargers in less congested areas and fast chargers in
high-demand zones like business districts, with minimal use of Level 2 chargers. Overall, the
optimization process did capture the spatial demand and activity type variability over the
Montreal network.

The optimal solution simulated in MATSim showed a significant reduction in the average
queue per plug, reflecting better resource distribution. However, the higher number of Level 1
chargers led to lower average plug utilization due to their lower throughput. The peak total
queue rose, indicating demand elasticity. Future work will integrate demand elasticity into the
metamodel for enhanced metamodel dynamics. Figure 8 shows the number of vehicles plugged
in and queued per plug when running MATSim Montreal with the optimal charger configuration.
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Figure 5: Convergence of Step 2: Metamodel Optimization

Figure 6: Charger type composition in original vs optimized new chargers
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Figure 7: Spatial distribution of chargers in the optimization result

Figure 8: Normalized vehicle plugged in and queued per plug in the optimized urbanEV scenario
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5 Conclusion
This study introduced a two-step, activity-driven, sequential charger allocation framework
for optimizing electric vehicle (EV) charging infrastructure in urban contexts. In Step
1, a modified K-means clustering algorithm identified candidate charger locations using
activity-based features, and in Step 2 minimization of the charger queues within budget and
power constraints was performed by utilizing a problem-specific metamodel to approximate
charger demand allocation, queue, and charging time. The genetic algorithm achieved a 21%
improvement over the random allocation benchmark, reducing the average peak-hour queue
from 27.3 hours to 21.47 hours while adhering to budgetary and zonal power constraints. The
optimized solution prioritized slow Level 1 chargers in low-congestion areas and fast chargers
in high-demand zones, deploying 40% more plugs than the original scenario while utilizing only
60% of the setup budget. Demand elasticity was observed when simulating the optimal solution
necessitating further development in the metamodel in future research.
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