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Short summary

The shift to fully electrified public transport is essential for sustainable urban mobility, but effi-
ciently deploying charging infrastructure remains a major challenge. Especially in the case when
cities already have electric bus networks, expanding fleets to additional routes introduces critical
operational hurdles. In that regard, this study introduces a strategic planning model to optimize
charging station placement, considering existing charging infrastructure at selected depots. The
model utilizes multi-objective mixed-integer linear programming, integrating fleet operations, in-
stallation costs, two different types of chargers (slow/fast) and electricity pricing. By addressing
these interdependent factors, the model minimizes capital expenditures, operational costs, and
deadhead times, facilitating cost-effective and efficient infrastructure expansion. A real-world ap-
plication in Limassol, Cyprus, highlights the model’s utility in offering actionable insights for urban
planners and policymakers, advancing the transition to sustainable public transport systems.
Keywords: charging station location; electric buses; operations research application.

1 Introduction

The transition toward electric mobility has become more crucial than ever. Although the uptake
of various electric vehicle types has grown significantly in recent years, the level of adoption varies
across cities, countries, and transportation sectors (Anastasiadou & Gavanas, 2022). In the realm
of public transportation, there is a continuous movement to electrify vehicle fleets that facilitate
public transit services, with particular emphasis on bus fleets in recent years (Kruchina, 2023).
A key factor driving the electrification of bus fleets is the urgent need to reduce Carbon Dioxide
(CO2) emissions and mitigate climate change, particularly in urban areas. While not specifically
introduced for public transport, various initiatives and legislative frameworks support the transition
to electric mobility by promoting cleaner transportation solutions. The European Green Deal1
aspires to achieve climate neutrality within the EU by 2050, with a strong focus on reducing
transport-related emissions. Complementing this goal, the Fit for 55 package2, introduced as
part of this overarching plan, aims to cut net greenhouse gas emissions by at least 55% by 2030.
Furthermore, the Clean Bus Declaration Act, endorsed in 2016 by over 80 private and public
entities, outlines a commitment and strategy for acquiring zero-emission buses, thereby advancing
sustainable urban mobility targets for 2030 (Lu et al., 2023).
Despite the efforts on a political level, the transition to electric mobility brings new technical
challenges, particularly in finding suitable locations for charging stations as well as scheduling
the refueling process for electric public transport vehicles. While these challenges can be partly
addressed by solely relying on traditional planning methods and domain expertise Bastarianto et
al. (2023), several innovative planning approaches have been proposed in the scientific literature
in the attempt to support the efforts made by practitioners and public transport authorities.
Early studies in this domain, including the ones by Jang et al. (2016) and Wang et al. (2016),
proposed optimization models for electric bus charging infrastructure, focusing on minimizing
initial infrastructure costs and determining optimal charger placements. Later, charger location
was co-optimised together with charging scheduling, a tactical planning horizon problem. For

1The European Green Deal, Website
2The Fit-for-55 package, Website
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example, Li et al. (2020) solved this integrated planning problem of regular charging electric bus
scheduling and charging station placement using an Adaptive Genetic Algorithm, while McCabe
& Ban (2023) introduced a MILP model that incorporated deadheading costs in the objective
function of the integrated problem.
More recently, the prominent research direction has become the integration of the charging station
location problem, charging scheduling as well as energy grid considerations. For instance, Zhou
et al. (2022) addressed the integrated planning of charging station deployment and electric bus
charging schedules, incorporating Time of Use (ToU) Tariffs and demand charges while focusing on
fast charger deployment. Foda & Mohamed (2024) developed three optimization models to tackle
the same integrated problem while accounting for the Total Cost of Ownership and Greenhouse
Gas emissions. Finally, connected to this work are the ones by Liu et al. (2021, 2023) who,
in their studies, account for Photovoltaic and Energy Storage Systems in combination with the
integrated planning problem. To the authors’ knowledge, no existing studies address the extension
of electric bus charging networks, incorporating both slow and fast chargers, while considering
charging scheduling, energy pricing constraints, and multiple objectives optimization.
To support the decision-making of public transport operators in their transition to electric mobil-
ity, this study presents a mathematical model for extending already established charging station
networks for electric buses. The problem is formulated as Mixed Integer-Linear Programming
(MILP) problem and integrates station placement, charging schedules, and energy pricing (ToU
Tariffs and Peak Demand Charge). The model generates optimal solutions targeting two objec-
tives: (i) minimizing bus deadhead times and (ii) reducing costs for charger installation and energy
consumption. To accurately analyse the relationship between these two objectives, an ϵ-Constraint
method is applied to approximate the Pareto optimal front of the problem.
The remainder of this paper is organized as follows. Section 2 presents our methodology and
mathematical formulation of the problem. Section 3 provides the case study on Limassol, Cyprus.
The article concludes with a summary of insights derived from this research.

2 Methodology

Problem statement

In response to the identified needs and respective research directions, we attempt to extend the
definition and formulation of the integrated problem of the Charging Station Location Selection
and Scheduling problem, as follows:

“Given initial sets of pre-existing slow and fast charging stations located at various sites V, along
with a specified Time-of-Use tariff structure, peak demand charges, and a maximum available budget
B, determine the optimal placement of new slow and fast charging stations. The objective is to
meet the charging demand of an electric bus fleet while minimizing installation costs, daily charging
expenses, and deadhead time across a set of designated bus trips K.”

From the definition of the problem, one may deduce that two objectives are considered for the
problem and the bus fleet operator (i.e. decision maker in our case):

1. Objective 1: The minimization of deadhead time, which is the travel time between the last
stop of the bus line (end of itinerary) and the arrival time at the charging station location.

2. Objective 2: The minimization of the monetary cost of installing new chargers and the
minimization of the daily operational charging costs stemming from the quantity of energy
consumed according to the ToU Tariffs and demand charge cost (based on peak demand).

Problem Formulation

We consider a set of bus lines L which perform a set of M bus trips, out of which a subset K
requires charging (K ⊆ M). These |K| vehicle trips must be assigned to a set of available charging
stations N and scheduled to respective time slots F . We consider that several chargers of two
types, slow and fast, can be installed in a pre-defined set of candidate charging station locations
V. Several potential charging installation options N (i.e. chargers) may be available at a single
physical location.
Our objective is to allocate K = {1, 2, 3, ...} vehicle trips requiring charging to the available chargers
N and charging slots F in a manner that minimizes financial upfront investments and operational
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costs, as well as vehicle deadhead times for charging purposes. The set of potential charger in-
stallations N can be divided into the set of slow charging options N1 and the set of fast charging
options N2. Within these, the set N3 denotes the already installed slow chargers at any location
within V, while N5 represents the potentially new slow charging stations. Similarly, the set N4

corresponds to the already installed fast charging stations, and N6 represents the new potential
fast charging stations.
Additionally, in this formulation, we assume three-time horizons. One is used for the time slots
of the slow chargers, one for the time slots of the fast chargers, and one for demand charge time
periods, as defined by an energy management authority or an energy grid operator. Each slow
charger j ∈ N1 can be utilized multiple times throughout the day, resulting in a set of charging
time slots F1 (i.e. first time horizon). Similarly, each charger j ∈ N2 results in a set of charging
time slots F2 (i.e. second time horizon). Set F3 is used for the third time horizon, indicating
the demand charge time periods, which are considered the time windows based on which the grid
operator calculates its charges.
Given this first presentation of the problem’s nomenclature, below, we provide the decision variables
of the formulation:

• xj ∈ {0, 1}, where xj = 1 if we decide to install charger j ∈ N , and 0 otherwise. Notably,
N = N1∪N2 = N3∪N4∪N5∪N6, indicating simultaneous selection of the charging location
and type.

• qkj ∈ {0, 1}, where qkj = 1 if trip k ∈ K is assigned to charger j ∈ N , and 0 otherwise.

• us
kjf1

∈ {0, 1}, where us
kjf1

= 1 if trip k starts charging at time slot f1 ∈ F1 at the slow
charger j ∈ N1.

• uh
kjf2

∈ {0, 1}, where uh
kjf2

= 1 if trip k starts charging at time slot f2 ∈ F2 at the fast
charger j ∈ N2.

Furthermore, several additional dependent variables are considered regarding the charging schedul-
ing of the electric buses in the third time horizon F3:

• UDs
jf3

∈ {0, 1}, where UDs
jf3

= 1, if any trip k ∈ K is charging at the slow charger j ∈ N1

during demand charge time period f3.

• UDh
jf3

∈ {0, 1}, where UDh
jf3

= 1, if any trip k ∈ K is charging at the fast charger j ∈ N2

during demand charge time period f3.

• IPmax, representing the maximum power consumed across all demand charge time periods
f3 ∈ F3.

• ECs
kjf1

∈ R≥0, representing the amount of energy transferred from the slow charging station
j ∈ N1 to the bus of trip k ∈ K at time slot f1 ∈ F1.

• ECh
kjf2

∈ R≥0, representing the amount of energy transferred from the fast charging station
j ∈ N2 to the bus of trip k ∈ K during demand charge time period f2 ∈ F2.

• DCs
kjf3

∈ R≥0, representing the amount of energy transferred from the slow chargers j ∈ N1

to the bus of trip k ∈ K during demand charge time period f3 ∈ F3.

• DCh
kjf3

∈ R≥0, representing the amount of energy transferred from the fast chargers j ∈ N2

to the bus of trip k ∈ K during demand charge time period f3 ∈ F3.

• DECf3 ∈ R≥0, representing the energy consumption at all chargers, slow and fast, during
each charging time slot f3 ∈ F3.

To include the aggregate monetary costs, we consider the ToU Tariffs Tf3 (price per kWh at
charging slot f3 ∈ F3). The Demand Charge Rate DCR applies to the peak power usage IPmax

during the demand charge period. The fixed cost of installing a charger j ∈ N is bj , with a total
budget bmax.
Given these parameters, the aggregate monetary costs for the extension and operation of the CS
network are:
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TOUC =

F3∑
f3

(Tf3 ·DECf3) (1)

DCC = DCR · IPmax (2)

CSI =
∑

j∈N5∪N6

xjbj (3)

Objective functions

The first objective function minimizes deadhead travel time yk for each electric bus trip requiring
charging from set |K| and is expressed as follows:

minimize O1 =
∑
k∈K

yk =
∑
j∈N

tkjqkj for all k ∈ K (4)

Where parameter tkj represents the bus’ deadhead time from the last stop of trip k to charger
j. Based on equations (1) to (3), the second objective function representing the monetary cost
associated with the installation and operation of the CS network is expressed as:

minimize O2 = DCC + TOUC + CSI (5)

Modeling of the CS network extension problem and the Charging Scheduling
sub-problem

According to the latest research directions, a standard set of constraints is considered for the CS
network extension problem:

xj = 1 ∀j ∈ N3 ∪N4 (6)
qkj ≤ xj ∀k ∈ K,∀j ∈ N (7)∑
k∈K

qkj ≥ xj ∀j ∈ N (8)∑
j∈N

qkj = 1 ∀k ∈ K (9)

∑
j∈N

xjbj ≤ bmax (10)

Similarly, Constraints (11) to (18) are considered for modeling the charging scheduling problem:

∑
f1∈F1

us
kjf1 +

∑
f2∈F2

uh
kjf2 ≤ qkj ∀k ∈ K,∀j ∈ N (11)

∑
f1∈F1

∑
j∈N1

us
kjf1 +

∑
f2∈F2

∑
j∈N2

uh
kjf2 = 1 ∀k ∈ K (12)

∑
k∈K

us
kjf1 ≤ 1 ∀j ∈ N1,∀f1 ∈ F1 (13)∑

k∈K

uh
kjf2 ≤ 1 ∀j ∈ N2,∀f2 ∈ F2 (14)

(1− us
kjf1)M + us

kjf1c
s
f1 ≥ (τk + tkj)qkj ∀k ∈ K,∀j ∈ N1,∀f1 ∈ F1 (15)

(1− uh
kjf2)M + uh

kjf2c
h
f2 ≥ (τk + tkj)qkj ∀k ∈ K,∀j ∈ N2,∀f2 ∈ F2 (16)

− (1− us
kjf1)M + us

kjf1c
s
f1 ≤ (psk + tkj)qkj ∀k ∈ K,∀j ∈ N1,∀f1 ∈ F1 (17)

− (1− uh
kjf2)M + uh

kjf2c
h
f2 ≤ (phk + tkj)qkj ∀k ∈ K,∀j ∈ N2,∀f2 ∈ F2 (18)

The start times for charging slots at slow and fast charging stations are given by csf1 and csf2 , while
psk and phk are the latest allowable start times for charging for each bus k.
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Precalculated parameters for the modelling of energy consumption

Given the provided State of Charge (SOCk) at each bus line’s final stop and the travel distances
to all existing or potential charger locations, these inputs enable the precalculation of energy
quantities that are potentially transferable to electric buses based on the charging decisions. Under
this assumption, we define the following precomputed parameters:

• The ECmax
kj = SOCmax

k −SOCk + e · dkj , which is the energy (kWh) that can be transferred
from a charger j to the bus k during any time slot, if the bus k charges at charger j.

• CP s, which is the charging power in kilowatts (kW) for slow chargers.

• CPh, which is the charging power in kilowatts (kW) for fast chargers.

• SMEs = hr1 ·CP s, which is the maximum energy (in kWh) that can be transferred from a
slow charger to the bus during a slow charger time slot f1.

• SMEs = hr2 ·CPh, similarly to the aforementioned pre-calculated parameter, it represents
the maximum energy (in kWh) that can be transferred from a fast charger to the bus during
a fast charger time slot f2.

• CCs
kj , which is a matrix of parameters, which take the value of 1 if the bus serving trip

k ∈ K charges for the whole duration of any charging slot f1 at charging outlet j ∈ N1

(ECmax
kj ≤ SMEs). The parameter takes the value of 0 if the bus charges up to its full

battery capacity (SOCmax
k = SOCk − e · dkj + ECmax

kj ).

• CCh
kj , similarly to the previously mentioned pre-calculated parameter, CCh

kj takes the value
of 1 if the bus serving trip k ∈ K charges for the whole duration of any slot f2 at charging
outlet j ∈ N2 (ECmax

kj ≤ SMEh).

• PECs
kj = SMEs ·CCs

kj+ECmax
kj ·(1−CCs

kj), is the pre-calculated parameter for the amount
of energy that can be transferred from slow charger j ∈ N1 to bus k, given its SOCk at
the last stop of the bus line, the battery capacity of the vehicle SOCmax

k and the minimum
travel distance dkj , is assigned to the slow charger j.

• PECh
kj = SMEh · CCh

kj + ECmax
kj · (1 − CCh

kj), similarly to the previously mentioned pre-
calculated parameter, PECh

kj represents the amount of energy that can be transferred from
fast chargers j ∈ N2 to any bus k.

Time-of-Use Tariffs modelling

Given the aforementioned pre-calculated parameters PECs
kj and PECh

kj the MILP model can
utilise constraints (19) to (24) to optimise the variables ECs

kjf1
and ECh

kjf1
:

ECs
kjf1

≤ M · us
kjf1 ∀k ∈ K,∀j ∈ N1, ∀f1 ∈ F1 (19)

ECh
kjf2

≤ M · uh
kjf2 ∀k ∈ K,∀j ∈ N2, ∀f2 ∈ F2 (20)

ECs
kjf1

≥ (−M) · (1− us
kjf1) + PECs

kj ∀k ∈ K,∀j ∈ N1, ∀f1 ∈ F1 (21)
ECs

kjf1
≤ M · (1− us

kjf1) + PECs
kj ∀k ∈ K,∀j ∈ N1, ∀f1 ∈ F1 (22)

ECh
kjf2

≥ (−M) · (1− uh
kjf2) + PECh

kj ∀k ∈ K,∀j ∈ N2, ∀f2 ∈ F2 (23)

ECh
kjf2

≤ M · (1− uh
kjf2) + PECh

kj ∀k ∈ K,∀j ∈ N2, ∀f2 ∈ F2 (24)

Given ECs
kjf1

and ECh
kjf2

, we still need to calculate the exact energy consumed per billable time
period f3. To achieve that, we must further consider the following model parameters.

• DCP s = hr1·CP s

rs = hr3 · CP s, which corresponds to the maximum amount of energy per
demand charge period f3 for slow chargers,

• DCPh = hr2·CPh

rh
= hr3 · CPh, which corresponds to the maximum amount of energy per

demand charge period f3 for fast chargers,

• FCSs
kj =

⌊
ECmax

kj

DCP s

⌋
, which corresponds to the number of time periods f3 within any respective

charging time slot f1 that consume energy equal to DCP s, out of the total number of rs
slots within any f1 that is chosen for the charging of k at j,
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• FCSh
kj =

⌊
ECmax

kj

DCPh

⌋
, similarly to the aforementioned pre-calculated parameter, FCSh

kj , repre-
sents the number of time periods f3 within any respective charging time slot f2 that consume
energy equal to DCPh,

• REs
kj = ECmax

kj −FCSs
kj ·DCP s, which is the amount of energy transferred from a charger

j ∈ N1 to a bus k during the time period f3 = FCSs
kj + 1,

• REh
kj = ECmax

kj −FCSh
kj ·DCPh, which is the amount of energy transferred from a charger

j ∈ N2 to a bus k during the time period f3 = FCSh
kj + 1,

Given the pre-calculated values for CCs
kj or CCh

kj , when they are equal to 1, the following con-
straints should be used for the values of DCs

kjf3
and DCh

kjf3
:

DCs
kjf3

≤ M · ECs
kjzs

f3
∀k ∈ K,∀j ∈ N1,∀f3 ∈ F3 (25)

DCh
kjf3

≤ M · ECh
kjzh

f3

∀k ∈ K,∀j ∈ N2, ∀f3 ∈ F3 (26)

DCs
kjf3

≥ (−M) · (1− CCs
kjzs

f3
) +

ECs
kjzs

f3

rs
∀k ∈ K,∀j ∈ N1, ∀f3 ∈ F3 (27)

DCs
kjf3

≤
ECs

kjzs
f3

rs
+M · (1− CCs

kjzs
f3
) ∀k ∈ K,∀j ∈ N1, ∀f3 ∈ F3 (28)

DCh
kjf3

≥ (−M) · (1− CCh
kjzh

f3

) +
ECh

kjzh
f3

rh
∀k ∈ K,∀j ∈ N2, ∀f3 ∈ F3 (29)

DCh
kjf3

≤
ECh

kjzh
f3

rs
+M · (1− CCh

kjzh
f3

) ∀k ∈ K,∀j ∈ N2, ∀f3 ∈ F3 (30)

For the case when CCs
kj or CCh

kj is equal to 0, then the following constraints should hold:

DCs
kjf3

≥ (−M) · CCs
kj +DCP s ∀k ∈ K, ∀j ∈ N1,∀f3 ∈ F3 : f3 ≤ FCSs

kjzs
f3

(31)

DCs
kjf3

≤ DCP s +M · CCs
kj ∀k ∈ K, ∀j ∈ N1,∀f3 ∈ F3 : f3 ≤ FCSs

kjzs
f3

(32)

DCs
kjf3

≥ (−M) · CCs
kj +REs

kj ∀k ∈ K,∀j ∈ N1,∀f3 ∈ F3 : f3 = FCSs
kj + 1 (33)

DCs
kjf3

≤ REs
kj +M · CCs

kj ∀k ∈ K,∀j ∈ N1,∀f3 ∈ F3 : f3 = FCSs
kjzs

f3
+ 1 (34)

DCh
kjf3

≥ (−M) · CCh
kj +DCPh ∀k ∈ K,∀j ∈ N2, ∀f3 ∈ F3 : f3 ≤ FCSh

kjzh
f3

(35)

DCh
kjf3

≤ DCPh +M · CCh
kj ∀k ∈ K,∀j ∈ N2, ∀f3 ∈ F3 : f3 ≤ FCSh

kjzh
f3

(36)

DCh
kjf3

≥ (−M) · CCh
kj + CCh

kj ∀k ∈ K,∀j ∈ N2, ∀f3 ∈ F3 : f3 = FCSh
kjzh

f3

+ 1 (37)

DCh
kjf3

≤ CCh
kj +M · CCh

kj ∀k ∈ K,∀j ∈ N2, ∀f3 ∈ F3 : f3 = FCSh
kjzh

f3

+ 1 (38)

Based on these constraints, we can then calculate the energy consumption in kWh per demand
charge period f3 for slow chargers, fast chargers, and the whole charging stations network:

DECf3 =
∑
k∈K

∑
j∈N1

DCs
kjf3

+
∑
k∈K

∑
j∈N2

DCh
kjf3

∀f3 ∈ F3 (39)

Modeling of Peak demand charge

The Peak Demand charge, distinct from ToU tariffs, is an additional cost for commercial electricity
usage. It is incorporated into the formulation via equation (2) and the second objective function
O2. Its calculation depends on the variables UDs

jf3
and UDh

jf3
, defined by constraints (40) and

(41):

M ·
∑
k∈K

us
kjzs

f3
≥ UDs

jf3
≥ m ·

∑
k∈K

us
kjzs

f3
∀j ∈ N1, ∀f3 ∈ F3 (40)

M ·
∑
k∈K

uh
kjzh

f3

≥ UDh
jf3

≥ m ·
∑
k∈K

uh
kjzh

f3

∀j ∈ N2, ∀f3 ∈ F3 (41)

Based on this, the dependent variable IPmax needs to be calculated according to the following
constraints:
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IP s
f3 =

∑
j∈N1

(CP s · UDs
jf3

) ∀f3 ∈ F3 (42)

IPh
f3 =

∑
j∈N2

(CPh · UDh
jf3

) ∀f3 ∈ F3 (43)

TIPf3 = IP s
f3 + IPh

f3 ∀f3 ∈ F3 (44)
IPmax ≥ TIPf3 ∀f3 ∈ F3 (45)

Location capacity and coverage

Given the state of charge SOCk for each trip k ∈ K that has completed its operations and necessi-
tates charging, there is a set of feasible charger locations that trip k can access without its state of
charge dropping below SOCmin

k . This coverage constraint is formally expressed in constraint (46).

SOCk − e · qkj · dkj ≥ SOCmin
k ∀k ∈ K (46)

In addition, each candidate location can have up to a specific number of chargers, with constraint
(47) formally expressing these limitations.

∑
j∈N :θj=v

xj ≤ Capv ∀v ∈ V (47)

Parameter θj is utilized for the mapping of the charging outlet j ∈ N(N1∪N2 and N1∩N2 = 0)
to the physical location v ∈ V.

The bi-objective Mixed Integer-Linear Programming model

Considering the above, the problem of the Optimal Extensions of Electric Bus Charging Infrastruc-
ture, when considering charging scheduling, two types of chargers (slow/fast) and energy pricing,
is formulated as follows:

(Q̃) :

min O1,O2

s.t.: Constraints (6) to (47)

The utilisation of the ϵ-Constraint method

Our problem and respective formulation have two objectives, O1 and O2. To effectively study their
relationship, we extend the methodology to utilize the ϵ-Constraint method that helps us estimate
the Pareto optimal front for the bi-objective problem under investigation. The ϵ-Constraint method
is utilised by solving m mathematical programs Q̃m based on the values of set ϵ = ϵ1, ϵ2, ..., ϵm as
the upper bound for Objective function O1:

(Q̃m) : (48)
min O2

s.t. O1 ≤ ϵm (49)
Constraints (6) to (47)

3 Results and discussion

Next, we present an application of the ϵ-constraint method and the MILP model in the urban
centre of Limassol, Cyprus and bus lines 3, 4, 5 (and 5B), 7, 9 (and 9A), and 11. The data about
ToU Tariffs and demand charges in Limassol have been acquired after direct communication with
the Electricity Authority of Cyprus.
The network of bus lines considered for Limassol, Cyprus, is depicted in Figures 1 and 2. As for
the initial set-up of the chargers, we consider that four slow chargers are already established. One
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is located at candidate charging location #2, and three are located at candidate charger location
#1. At most, up to three slow and three fast chargers are allowed at each candidate location (i.e.
blue markers of Figure 2).

Figure 1: The bus lines considered for the case study in Limassol, Cyprus.

Figure 2: The candidate charger locations (blue markers) and the bus trip services’ last
stops (orange markers) for the Limassol, Cyprus case study.

Using the ϵ-constraint method, the MILP model is solved for various ϵ values, with the results
being shown in Figures 3 and 4. Figure 3 displays O2 (in dollars) on the y-axis against ϵ values on
the x-axis. Figure 4 plots all solutions, with O1 (deadhead time in minutes) on the x-axis and O2

on the y-axis.
According to the results, four Pareto optimal solutions exist to the problem under study. Pareto’s
optimal solutions for Limassol differ in terms of the number of chargers they are proposing, the
type of charger, and the charging schedule. The first Pareto solution proposes the installation
of eight chargers overall, one of which is fast. That means that the model solution proposes the
installation of three new slow chargers and one fast in addition to the already existing ones. The
solution derives a deadhead time of O1 = 42.67 minutes and a cost of O2 = 150893.34 dollars.
Pareto optimal solutions two, three and four provide a considerable decrease in monetary cost
O2, but an increase in deadhead time O1. Particularly, Pareto solution two proposes a network
of seven slow chargers and results in a deadhead time of O1 = 49.23 minutes and a cost of
O2 = 100903.86 dollars. Pareto solution three proposes six slow chargers and achieves a deadhead
time of O1 = 87.61 at a cost of O2 = 70904.74 dollars. Finally, Pareto solution #4 reduces the
monetary cost O2 compared to #3, but increases deadhead time substantially. It proposes the
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Figure 3: Results of the e-constraint method for the case study of the Limassol, Cyprus
area.

Figure 4: The approximation of the Pareto optimal front of solutions for the case study
on the network of Limassol, Cyprus.

installation of five overall chargers (i.e. only one extra fast charger), with the deadhead time being
calculated at O1 = 135.51 minutes, while the cost is O2 = 60899.07 dollars.
Depending on the objectives of the public transport operator, one of the four Pareto-optimal
solutions may be selected for the strategic planning of the extension of the charging stations
network in Limassol, Cyprus.

4 Conclusions

The approximation of the Pareto front for the bi-objective formulation of the charging station
network in Limassol, Cyprus, offers critical insights into the dynamics of the problem. Notably,
four non-dominated solutions have been identified, each representing a trade-off between competing
objectives, thereby enabling a deeper posterior analysis based on the specific priorities of decision-
makers. These solutions reflect diverse configurations of charging station networks, balancing
factors such as the number and type of chargers, their locations, and the associated operational
efficiencies. The solution diversity that emerges from this analysis underscores the complexity
of the optimization landscape and highlights the potential for stakeholders to tailor solutions to
specific operational and economic goals.
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