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Short summary

This paper introduces BHAMSLE, a Breakpoint Heuristic Algorithm for Maximum Simulated Like-
lihood Estimation (MSLE), adapted from the Breakpoint Heuristic Algorithm (BHA) for choice-
based pricing, bridging the gap between choice-based optimization and choice model estimation.
Similarly to the BHA, BHAMSLE leverages indifference points—or breakpoints—in individual
decision-making to systematically explore local optima. Benchmark comparisons with PandasBio-
geme, the current state-of-the-art software for DCM estimation, demonstrate that BHAMSLE,
both as a standalone estimation procedure and as an approach for obtaining high-quality starting
points, substantially improves log-likelihood on different latent class logit as well as latent class
mixed logit models across 100 random samples, with gains of up to 10% for observed choices and
up to 16% for synthetic choices. Notably, small numbers of draws are often enough to observe
significant gains, with larger samples further amplifying these improvements.
Keywords: Discrete Choice, Heuristic, Latent Class, Maximum Simulated Likelihood Estimation.

1 Introduction

Maximum likelihood estimation (MLE) is a widely used method for estimating parameters of a
specified distribution based on observed data. It plays a significant role in fields such as physics
(Hauschild & Jentschel, 2001), machine learning (Goodfellow et al., 2016), and discrete choice
modeling (Bierlaire, 2023).
The estimation of a discrete choice model involves determining coefficient values that maximize
the log-likelihood of the observed data. This process typically begins with initializing the coef-
ficients, followed by iterative updates through an optimization algorithm until a predefined con-
vergence criterion is met. Consequently, the initialization of coefficients—along with the chosen
algorithm—directly influences the trajectory of the estimation process. For widely used models
such as the multinomial logit, nested logit, and generic mixed logit, this initialization rarely poses a
significant issue. These models generally exhibit a unique global optimum, making the estimation
process relatively straightforward.
The latent class model specifically has seen an increase in popularity over the last decade. Where
the mixed logit merely allows to control for unobserved heterogeneity, the latent class model
generally also allows to get a better understanding of that heterogeneity. Despite this advantage,
latent class models face a critical drawback—difficulty in estimation due to numerous local optima,
with some model specifications yielding hundreds of potential solutions (Peer et al., 2016). As
a result, the initialization of the coefficients and the specific estimation algorithm used heavily
influence the identified solution. To ensure convergence to the global optimum, it is essential to
perform multiple estimations with diverse initializations. This issue is well-documented in the
literature; for instance, Jung & Wickrama (2008) emphasize the prevalence of local solutions in
latent class modeling and advocate for repeated random initialization as a necessary practice.
For advanced discrete choice models such as mixed logit and latent class mixed logit models,
additional challenges arise due to the complete lack of closed-form expressions in their choice
probabilities. Consequently, determining optimal parameters relies on simulation techniques, like
maximum simulated likelihood estimation (MSLE) (Train, 2003).
A general MSLE approach was introduced by Fernandez Antolin (2018), framing the problem as
a mixed-integer linear program (MILP), demonstrating that MSLE can be seen as a choice-based
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optimization problem. Traditionally, such problems integrate a DCM to account for stochastic
behavior within an optimization context, often targeting endogenous parameters, such as the price
of a product, to maximize revenue or other metrics. In the case of MSLE, one instead assumes
fixed choice attributes, with the choice model parameters taking on the role of the decision vari-
ables, maximizing the simulated likelihood as the objective function. This perspective bridges a
gap between choice-based optimization techniques and simulated likelihood estimation, suggesting
potential for cross-applications between the two.
Building on this insight, this study introduces BHAMSLE (Breakpoint Heuristic Algorithm for
MSLE), adapted from the Breakpoint Heuristic Algorithm (BHA) originally designed for choice-
based pricing Haering et al. (2024). BHAMSLE systematically explores local optima by leveraging
“breakpoints” that capture critical shifts in individuals’ decision-making. The algorithm is eval-
uated on a set of latent class estimation problems, where we assess its performance both as a
standalone estimation method and as an initialization tool for PandasBiogeme. The remainder of
the paper is organized as follows: Section 2 provides the necessary notation and describes BHAM-
SLE, while Section 3 presents the case study and computational experiments. Finally, Section 4
offers concluding remarks and essential takeaways.

2 Methodology

In this section, we give the problem formulation for MSLE and introduce BHAMSLE. While we
illustrate both the problem and algorithm specifically for the case of a latent class model, it is
important to emphasize that the algorithm is general and can be applied to estimate any DCM.

MSLE problem formulation

Consider a set of N = {1, . . . , N} individuals, each choosing exactly one option amongst a set of
choices I = {1, . . . , I}. An individual may have access to only a subset of these choices, indicated
by their choice set Cn ⊂ I. The observed choice for individual n ∈ N is denoted by yn ∈ I. Each
alternative is assigned a stochastic utility Uin, composed of a deterministic component Vin and a
random error term εin. The deterministic component is represented by the linear combination of
product attributes and socio-economic characteristics xink (where k ∈ K = {1, . . . ,K} indexes the
set of all such factors) with the endogenous parameters βk that are to be estimated. The error
term εin captures unobserved and irrational behavior. The utility Uin is now given by:

Uin = Vin + εin =
∑
k∈K

xinkβk + εin n ∈ N , i ∈ Cn.

We furthermore assume that each individual n ∈ N selects the alternative i ∈ Cn corresponding to
the maximal utility Uin. In latent class models, the analyst tests the hypothesis that the population
of individuals can be divided into a set of latent classes C = {1, . . . , C}, each characterized by
distinct preferences. The probability that an individual belongs to latent class c ∈ C is denoted
by πc and requires estimation. As

∑
c πc = 1, only C − 1 of these probabilities are independently

estimable, with the final probability determined by this condition. The probability that individual
n selects alternative i given their membership in class c is given by:

Pin|c = P(U c
in ≥ U c

jn, ∀j ∈ Cn),

where U c
in represents the utility of alternative i for individual n, given class membership c. The

unconditional probability Pin of individual n choosing option i is then described by
∑

c πcPin|c. For
advanced DCMs, Pin may not have a closed-form expression, necessitating approximation through
random draws to simulate error components and class memberships. For example, in a mixed logit
model, a parameter βm might be assumed to be distributed normally amongst the population with
mean βmean

m and standard deviation βstd
m . For each simulation scenario r ∈ R = {1, . . . , R} we can

then describe the deterministic utility Uinr as:

Uinr =
[ ∑
k∈K\{m}

xinkβk

]
+ xinm(βmean

m + unrβ
std
m ) + εinr n ∈ N , i ∈ Cn, r ∈ R,

where unr is a draw from N (0, 1) and εinr a draw from Gumbel(0, 1). The simulated choices for
each scenario are captured by binary variables ωinr, i.e. ωinr = 1 ⇔ Uinr = maxj Ujnr. Now
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R

∑
r ωinr provides an unbiased estimator for Pin. The objective function to be maximized, the

simulated log-likelihood sLL(π, β), is given by:

sLL(π, β) =
∑
n∈N

ln
( 1

R

∑
r∈R

ωynnr

)
.

Breakpoint Heuristic Algorithm for MSLE (BHAMSLE)

BHAMSLE capitalizes on the idea of decision-making breakpoints, more specifically “entry” and
“exit” breakpoints for each individual n and scenario r, signifying where the tuple (n, r) is captured
or lost. These breakpoints represent a set of local optima that can be enumerated. The method
can be categorized as a coordinate descent (ascent), iteratively optimizing one parameter at a time
while fixing all others, terminating once no parameter can be improved further. Let γg, g ∈ G =
{1, . . . , C−1} represent the parameters that separate the unit interval into C partitions P1, . . . , PC .
Furthermore, draws from the uniform [0, 1] distribution used to simulate class membership are
denoted by σnr, n ∈ N , r ∈ R. The full algorithm is described in the following procedure:

1. Choose a starting point for the estimation, usually, β∗
k = 0, k ∈ K, γ∗

g = g
C , g ∈ G, and

compute its objective value o∗ = SLL(π∗, β∗).
2. Set j = 1.
3. Fix all other parameters βk = β∗

k , k ̸= j and γg = γ∗
g , g ̸= j −K.

4. Compute the set of breakpoints, initialized as B = {}:
for n ∈ N , r ∈ R :

if j ≤ K :
for c ∈ C :

if σnr ∈ Pc :
Compute the segment [s1, s2] where U c

ynnr ≥ U c
inr ∀i ∈ Cn. Add

(s1, n) as an entry breakpoint and (s2, n) as an exit breakpoint to B.
end

end
else

Let g ← j −K.
if σnr ∈ (γ∗

g−1, γ
∗
g+1) :

Let W ← {c ∈ {g, g + 1} | U c
ynnr ≥ U c

inr, ∀i ∈ I}.
if W = {g, g + 1} :

Add (−∞, n) as an entry breakpoint to B.
elseif W = {g} :

Add (σnr, n) as an entry breakpoint to B.
elseif W = {g + 1} :

Add (σnr, n) as an exit breakpoint to B.
end

end
end

end

5. Sort B in ascending order. Define Σn = |{entry point (x, y) ∈ B : x = −∞, y = n}|, n ∈ N ,
o = −N ln(R) +

∑
n ln(Σn) and B ← {(x, y) ∈ B : x ̸= −∞}. Then evaluate all b ∈ B:

for b ∈ B :
if b is an entry point :

o += ln(Σn + 1)− ln(Σn).
else

o += ln(Σn − 1)− ln(Σn).
end
if o > o∗ :

o∗ = o, if j ≤ K set β∗
j = b, else set γ∗

j−K = b.
end

end

6. Set j = j + 1 (if now j = K + C, set j = 1) and repeat from step 3.
7. Terminate when no improvement is found over K + C − 1 iterations.
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N R LL-Bio sLL-B LL-B Gap (%) (p1, p2)-Bio (p1, p2)-B T-Bio T-B

500 1 -414.509 -804.719 -513.625 -23.91 (0.47, 0.53) (0.50, 0.50) 9 0
500 5 -414.509 -804.719 -513.625 -23.91 (0.47, 0.53) (0.50, 0.50) 7 0
500 10 -414.509 -692.120 -436.954 -5.41 (0.47, 0.53) (0.60, 0.40) 8 0
500 20 -414.509 -421.346 -407.011 1.81 (0.47, 0.53) (0.49, 0.51) 7 1
500 50 -414.509 -400.484 -397.845 4.02 (0.47, 0.53) (0.55, 0.45) 3 2
500 100 -414.509 -398.038 -395.873 4.50 (0.47, 0.53) (0.53, 0.47) 4 6
500 500 -414.509 -394.770 -395.622 4.56 (0.47, 0.53) (0.55, 0.45) 3 31
500 1,000 -414.509 -395.112 -395.528 4.58 (0.47, 0.53) (0.52, 0.48) 4 67

1,000 1 -828.307 -1609.440 -1027.450 -24.04 (0.49, 0.51) (0.50, 0.50) 7 0
1,000 5 -828.307 -1609.440 -1027.450 -24.04 (0.49, 0.51) (0.50, 0.50) 8 0
1,000 10 -828.307 -1402.890 -885.524 -6.91 (0.49, 0.51) (0.55, 0.45) 9 1
1,000 20 -828.307 -853.607 -819.559 1.06 (0.49, 0.51) (0.61, 0.39) 10 2
1,000 50 -828.307 -810.007 -796.224 3.87 (0.49, 0.51) (0.57, 0.43) 4 6
1,000 100 -828.307 -798.965 -791.984 4.39 (0.49, 0.51) (0.52, 0.48) 4 13
1,000 500 -828.307 -790.545 -790.466 4.57 (0.49, 0.51) (0.55, 0.45) 4 66
1,000 1,000 -828.307 -788.956 -789.431 4.69 (0.49, 0.51) (0.56, 0.44) 4 134

Table 1: BHAMSLE (B) vs. PandasBiogeme (Bio) on a latent class logit model with ob-
served choices (N = population size, R = number of draws, sLL = simulated log-likelihood,
LL = log-likelihood, T = estimation time in seconds)

Maintaining information on whether a breakpoint represents an entry or exit for a given individual n
is crucial, as it enables the efficient processing of breakpoints in ascending order. This organization
allows for the incremental computation of changes in the simulated log-likelihodd (sLL) in O(1)
time per breakpoint. In contrast, evaluating the sLL objective function directly each time, as a
generic global solver would, necessitates O(NR) operations. This distinction results in substantial
computational savings, particularly for large-scale problems.

3 Results and discussion

To test our approach, we perform experiments on four different setups: latent class logit and
latent class mixed logit models with observed vs. synthetically generated choices. All tests are
performed in a single thread on a computational cluster node with two 2.4 GHz Intel Xeon Platinum
8360Y processors, utilizing 16 GB of RAM. We benchmark BHAMSLE against PandasBiogeme
3.2.14 (Bierlaire, 2023). For each test, we consider sample sizes N = {500, 1000} and numbers
of scenarios R = {50, 100, 500, 1000}, where for mixed logit models we increase the number of
scenarios up to R = 3000. For every tuple (N,R) we take 100 samples from the full dataset (and
respective distributions) and report the averaged obtained values. For the latent class mixed logit
models, Biogeme’s simulation module is used to compute the log-likelihood.
The first dataset is extracted from stated preference data on hypothetical mode choice collected
in Switzerland (Bierlaire et al., 2001). Three alternatives are considered: Swissmetro (SM), rail,
and car, with the latter being available only to car owners. In the first experiment, we hypothesize
that there exists a portion of the population that has a different sensitivity to travel time than the
rest. Thus a separate β′

traveltime is estimated for this class. We refer to this class as class 2 and to
the base model as class 1. The systematic utility equations for the two classes are:

V
(1)
car = ASCcar + βtraveltime · traveltimecar + βcost · costcar,

V
(1)
rail = ASCrail + βtraveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(1)
SM = βtraveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM,

V
(2)
car = ASCcar + β′

traveltime · traveltimecar + βcost · costcar,

V
(2)
rail = ASCrail + β′

traveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(2)
SM = β′

traveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM.
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N R LL-Bio1 LL-Bio2 Gap (%) (p1, p2)-Bio1 (p1, p2)-Bio2 T-Bio1 T-B T-Bio2

500 1 -438.812 -438.760 0.01 (0.45, 0.55) (0.44, 0.56) 17 0 20
500 5 -431.788 -428.005 0.88 (0.44, 0.56) (0.41, 0.59) 14 0 13
500 10 -427.414 -428.099 -0.16 (0.45, 0.55) (0.43, 0.57) 20 0 19
500 20 -426.447 -426.925 -0.11 (0.46, 0.54) (0.49, 0.51) 23 1 20
500 50 -439.559 -435.483 0.93 (0.44, 0.56) (0.42, 0.58) 24 3 17
500 100 -431.124 -433.809 -0.62 (0.40, 0.60) (0.41, 0.59) 23 6 23
500 500 -490.745 -436.676 11.02 (0.33, 0.67) (0.39, 0.61) 38 46 48
500 1,000 -488.010 -435.165 10.83 (0.34, 0.66) (0.38, 0.62) 90 107 55
500 3,000 -474.640 -433.381 8.69 (0.34, 0.66) (0.39, 0.61) 312 347 135

1,000 1 -877.418 -875.202 0.25 (0.39, 0.61) (0.48, 0.52) 11 0 11
1,000 5 -868.597 -867.473 0.13 (0.41, 0.59) (0.45, 0.55) 15 0 15
1,000 10 -855.605 -855.563 0.00 (0.46, 0.54) (0.46, 0.54) 19 1 21
1,000 20 -856.742 -853.567 0.37 (0.45, 0.55) (0.41, 0.59) 28 2 30
1,000 50 -869.742 -866.792 0.34 (0.44, 0.56) (0.41, 0.59) 23 7 23
1,000 100 -888.778 -870.692 2.04 (0.44, 0.56) (0.42, 0.58) 26 14 38
1,000 500 -867.117 -845.290 2.52 (0.44, 0.56) (0.39, 0.61) 88 96 83
1,000 1,000 -869.915 -845.012 2.87 (0.43, 0.57) (0.39, 0.61) 166 219 169
1,000 3,000 -868.542 -843.699 2.86 (0.43, 0.57) (0.40, 0.60) 477 619 493

Table 2: Biogeme without (Bio1) and with (Bio2) BHAMSLE (B) starting point on a latent
class mixed logit model with observed choices (N = population size, R = number of draws,
sLL = simulated log-likelihood, LL = log-likelihood, T = estimation time in seconds)

Thus we have a total of seven parameters to be estimated. The results are presented in Table 1. We
observe that, as the number of simulation draws R increases, the difference in the simulated log-
likelihood (sLL) and the true log-likelihood (LL) for BHAMSLE decreases significantly, indicating
that the approximation becomes more accurate with more draws. The comparison of log-likelihood
values between the two methods demonstrates the effectiveness of the heuristic: starting from
R = 50, BHAMSLE manages to consistently find higher quality solutions than Biogeme, with an
average improvement of around 4.5% in log-likelihood. For the estimated probabilities of the two
latent classes (p1, p2), Biogeme struggles to discern between the two classes, assigning practically
uniform probabilities. For BHAMSLE, at low R, we observe the estimated probabilities remain
close to uniform as well, but again around R = 50 draws we notice that BHAMSLE is able to
capture a slightly higher probability for class 1, which likely is the main reason for the improved
likelihood. Finally, in terms of runtime, BHAMSLE is significantly slower than Biogeme for larger
numbers of draws. However, for small R, the estimation time is almost negligible, at only a couple
of seconds.
In the second experiment, we make use of a similar model specification, but this time for class 2 we
hypothesize that there exists a portion of the population that shows different intrinsic preferences
for the alternatives than the rest of the people, thus separate alternative specific constants ASC′

car
and ASC′

rail are estimated. For class 1, we consider the βtraveltime parameter to be normally
distributed amongst the population, resulting in a latent class mixed logit model. To this extent,
we denote βmixed

traveltime = βtraveltime + βstd
traveltime · Un, where Un ∼ N (0, 1), and replace βtraveltime by

this new parameter for class 1, keeping everything else the same. We give the new systematic
equations below:

V
(1)
car = ASCcar + βmixed

traveltime · traveltimecar + βcost · costcar,

V
(1)
rail = ASCrail + βmixed

traveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(1)
SM = βmixed

traveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM,

V
(2)
car = ASC′

car + βtraveltime · traveltimecar + βcost · costcar,

V
(2)
rail = ASC′

rail + βtraveltime · traveltimerail + βcost · costrail + βheadway · headwayrail,

V
(2)
SM = βtraveltime · traveltimeSM + βcost · costSM + βheadway · headwaySM.
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N R LL-Bio1 LL-Bio2 Gap (%) T-Bio1 T-B T-Bio2

500 1 -219.870 -219.870 0.00 2 0 3
500 5 -219.870 -219.870 0.00 2 0 2
500 10 -219.870 -215.130 2.16 4 0 1
500 20 -219.870 -218.138 0.79 2 2 2
500 50 -219.870 -192.996 12.22 2 9 2
500 100 -219.870 -192.892 12.27 3 24 2
500 500 -219.870 -192.808 12.31 1 211 1
500 1,000 -219.870 -192.802 12.31 1 445 1

1,000 1 -455.687 -455.687 0.00 2 0 2
1,000 5 -455.687 -455.687 0.00 2 0 4
1,000 10 -455.687 -451.570 0.90 2 0 2
1,000 20 -455.687 -383.782 15.78 2 4 3
1,000 50 -455.687 -382.670 16.02 2 24 2
1,000 100 -455.687 -382.289 16.11 2 51 2
1,000 500 -455.687 -382.002 16.17 1 506 1
1,000 1,000 -455.687 -381.962 16.18 2 1,121 1

Table 3: Biogeme without (Bio1) and with (Bio2) BHAMSLE (B) starting point on a
latent class logit model with synthetic choices (N = population size, R = number of draws,
sLL = simulated log-likelihood, LL = log-likelihood, T = estimation time in seconds)

The total number of parameters to estimate thus increases to nine. In order to examine the effec-
tiveness of BHAMSLE in providing good starting points for estimation, we focus on the estimation
results for Biogeme with the standard starting point (Bio1) and the results when using the solu-
tion from BHAMSLE as a starting point (Bio2). These results are shown in Table 2. We observe
that for smaller values of R, the differences between LL-Bio1 and LL-Bio2 are small. However,
as the number of simulation draws increases, the impact of the heuristic becomes more apparent.
For samples of size N = 500, significant improvements in log-likelihood are achieved using the
BHAMSLE starting point, yielding up to 10% better solutions. For N = 1000, we still achieve
an improvement of around 3%. The number of simulation draws necessary for good estimation
results is higher here, with BHAMSLE providing better starting points starting from R = 500. It
is important to note that it is also possible for BHAMSLE to provide a starting point that is worse
than the standard starting point, as seen for example with N = 500, R = 100. This likely stems
from the fact that small numbers of draws are not enough to efficiently capture the mixed param-
eter. The differences in the estimated latent class probabilities are again not large, but substantial
enough to make a difference. It appears that the true distribution of the two classes lies close to
40% for class 1 vs. 60% for class 2. Using the heuristic as a starting point consistently guides
Biogeme towards this improved local optimum. The runtimes for both methods are substantially
increased, but the gap between Biogeme and BHAMSLE is smaller than for the latent class model
logit model, with Biogeme completing the estimation about 1.5 times faster than the heuristic.
For next two tests we consider a different data set. It is extracted from revealed preference data
on mode choice collected in London (Hillel et al., 2018). There are four alternatives available to
all individuals: walking, cycling, public transport (pt), and driving. This time, instead of using
observed choices, we use synthetic choices: In a pre-processing step, using a separately estimated
logit model, every individual in the sample is assigned to either class 1, which represents the base
model, or class 2, in which the time-sensitivity parameter βtraveltime is divided by a factor of 5 to
generate the choice. We therefore estimate a separate travel time sensitivity parameter β′

traveltime
for that class. The probability to be assigned to class 1 is 70%, and the probability for class 2
is 30%. We investigate which estimation method performs better in discovering these now known
latent population segments. The systematic equations for the utilities are:
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N R Ratio-Bio1 Ratio-B Ratio-Bio2 (p1, p2)-Bio1 (p1, p2)-B (p1, p2)-Bio2

500 1 0.67 0.62 0.67 (0.46, 0.54) (0.50, 0.50) (0.46, 0.54)
500 5 0.67 0.55 0.67 (0.46, 0.54) (0.50, 0.50) (0.46, 0.54)
500 10 0.67 0.64 0.51 (0.46, 0.54) (0.47, 0.53) (0.09, 0.91)
500 20 0.67 2.88 2.90 (0.46, 0.54) (0.55, 0.45) (0.64, 0.36)
500 50 0.67 3.83 3.47 (0.46, 0.54) (0.53, 0.47) (0.65, 0.35)
500 100 0.67 4.57 4.92 (0.46, 0.54) (0.67, 0.33) (0.68, 0.32)
500 500 0.67 4.69 4.92 (0.46, 0.54) (0.67, 0.33) (0.68, 0.32)
500 1,000 0.67 4.67 4.91 (0.46, 0.54) (0.67, 0.33) (0.68, 0.32)

1,000 1 0.84 1.09 0.84 (0.45, 0.55) (0.50, 0.50) (0.45, 0.55)
1,000 5 0.84 1.30 0.84 (0.45, 0.55) (0.50, 0.50) (0.45, 0.55)
1,000 10 0.84 12.17 0.85 (0.45, 0.55) (0.53, 0.47) (0.50, 0.50)
1,000 20 0.84 2.52 2.05 (0.45, 0.55) (0.53, 0.47) (0.62, 0.38)
1,000 50 0.84 4.28 4.98 (0.45, 0.55) (0.58, 0.42) (0.70, 0.30)
1,000 100 0.84 4.38 4.98 (0.45, 0.55) (0.63, 0.37) (0.70, 0.30)
1,000 500 0.84 4.69 4.97 (0.45, 0.55) (0.70, 0.30) (0.70, 0.30)
1,000 1,000 0.84 4.63 4.97 (0.45, 0.55) (0.70, 0.30) (0.70, 0.30)

Table 4: Ratios and probabilities for Biogeme without (Bio1) and with (Bio2) BHAMSLE
(B) starting point on a latent class logit model with synthetic choices (N = population
size, R = number of draws, Ratio = βtraveltime /β′

traveltime)

V
(1)
walking = βtraveltime · traveltimewalking + βcost · costwalking,

V
(1)
cycling = ASCcycling + βtraveltime · traveltimecycling + βcost · costcycling,

V
(1)
pt = ASCpt + βtraveltime · traveltimept + βcost · costpt,

V
(1)
driving = ASCdriving + βtraveltime · traveltimedriving + βcost · costdriving,

V
(2)
walking = β′

traveltime · traveltimewalking + βcost · costwalking,

V
(2)
cycling = ASCcycling + β′

traveltime · traveltimecycling + βcost · costcycling,

V
(2)
pt = ASCpt + β′

traveltime · traveltimept + βcost · costpt,

V
(2)
driving = ASCdriving + β′

traveltime · traveltimedriving + βcost · costdriving.

Thus we have a total of seven parameters to be estimated. We again focus on the impact when
using the solution from BHAMSLE as a starting point for Biogeme. The results are presented
in Tables 3 and 4. Table 3 shows that the BHAMSLE starting point significantly improves the
log-likelihood values starting from R = 50, with the gap between LL-Bio1 and LL-Bio2 reaching
up to 16%. In terms of estimation times, running the heuristic as a pre-processing step starts
being computationally expensive only around R = 500 draws. Table 4 highlights that, with the
help of BHAMSLE, Biogeme is significantly better at discovering the correct ratio between the two
estimated travel time sensitivity parameters. Between 50-100 draws are enough for BHAMSLE
to find solutions with a ratio close to the true value 5. For the estimated class membership
probabilities (p1, p2) we observe similar outcomes: Starting from R = 50 draws, BHAMSLE is
able to guide Biogeme very closely to the correct distribution of (0.70, 0.30). In contrast, Biogeme
without the heuristic starting point struggles to identify the correct proportions, remaining closer
to uniform splits.
For the last experiment, we perform a similar altercation to class 1 as in experiment 1, this time
replacing βcost by a normally distributed βmixed

cost = βcost + βstd
cost · Un, with Un ∼ N (0, 1), together

with adding a third latent class, which is hypothesized to be “lazy”, which in this context means
that they do not consider walking or cycling in their choice set. Class 2 remains the same as in
the previous experiment. We assign individuals to class 1 with a probability of 50%, class 2 with
30%, and class 3 with 20%. We give the new systematic equations for the utilities of classes 1 and
3 below:
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N R LL-Bio1 LL-Bio2 Gap (%) T-Bio1 T-B T-Bio2

500 1 -249.850 -242.219 3.05 101 0 12
500 5 -244.705 -244.801 -0.04 21 0 19
500 10 -242.226 243.108 -0.36 28 34 25
500 20 -241.122 -238.055 1.27 41 82 38
500 50 -241.074 -241.647 -0.24 69 209 69
500 100 -239.411 -238.177 0.52 169 505 159
500 500 -239.935 -230.889 3.77 674 3012 693
500 1,000 -242.083 -231.634 4.32 1,524 5,153 1,642
500 3,000 -241.139 -230.855 4.26 4,827 12,197 5,141

1,000 1 -511.452 -501.856 1.88 53 0 31
1,000 5 -506.297 -480.593 5.08 26 0 28
1,000 10 -485.990 -488.870 -0.59 33 1 39
1,000 20 -484.787 -485.038 -0.05 69 1 66
1,000 50 -481.808 -482.956 -0.24 167 756 168
1,000 100 -482.799 -479.026 0.78 305 541 362
1,000 500 -490.314 -468.533 4.44 1,240 4,391 1,395
1,000 1,000 -495.295 -473.412 4.42 3,188 7,522 2,812
1,000 3,000 -493.228 -470.436 4.62 6,862 13,756 8,756

Table 5: Biogeme without (Bio1) and with (Bio2) BHAMSLE (B) starting point on a
latent class mixed logit model with synthetic choices (N = population size, R = number
of draws, sLL = simulated log-likelihood, LL = log-likelihood, T = estimation time in
seconds)

V
(1)
walking = βtraveltime · traveltimewalking + βmixed

cost · costwalking,

V
(1)
cycling = ASCcycling + βtraveltime · traveltimecycling + βmixed

cost · costcycling,

V
(1)
pt = ASCpt + βtraveltime · traveltimept + βmixed

cost · costpt,

V
(1)
driving = ASCdriving + βtraveltime · traveltimedriving + βmixed

cost · costdriving,

V
(3)
pt = ASCpt + βtraveltime · traveltimept + βcost · costpt,

V
(3)
driving = ASCdriving + βtraveltime · traveltimedriving + βcost · costdriving.

Thus we have a total of nine parameters to be estimated. The results are presented in Tables 5
and 6. Similarly to the second experiment, Table 5 reveals that in order to find a good starting
point for latent class mixed logit, a higher number of draws is necessary. In this case, starting from
R = 500 draws we observe significant improvements (up to 4.5%) in log-likelihood for Biogeme with
the BHAMSLE starting point. For this amount of draws, the estimation time is proportionately
high, with BHAMSLE on average taking more than twice the amount of time compared to Biogeme
when estimating the model with N = R = 1, 000. Table 6 presents the estimated class membership
probabilities for each method. The expected probabilities are (0.50, 0.30, 0.20) based on the
synthetic choice generation. Both methods struggle to recreate these proportions exactly, but
for high enough numbers of draws (R ≥ 500) BHAMSLE consistently provides improvements on
Biogeme in terms of detecting the true segmentation. For example, at N = 1, 000 and R = 3, 000,
Biogeme without a good starting point estimates the probabilities as (0.26, 0.63, 0.11), compared
to (0.50, 0.31, 0.19) when guided by BHAMSLE, which aligns closely with the expected values.

4 Conclusions

This work aims to enhance the estimation of advanced discrete choice models (DCMs) by introduc-
ing BHAMSLE, a Breakpoint Heuristic Algorithm for Maximum Simulated Likelihood Estimation.
By adapting the principles of the Breakpoint Heuristic Algorithm, originally developed for choice-
based pricing, BHAMSLE leverages decision-making breakpoints to systematically explore local
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N R (p1, p2, p3)-Bio1 (p1, p2, p3)-B (p1, p2, p3)-Bio2

500 1 (0.46, 0.42, 0.12) (0.33, 0.33, 0.33) (0.51, 0.32, 0.17)
500 5 (0.50, 0.37, 0.13) (0.33, 0.33, 0.33) (0.49, 0.37, 0.14)
500 10 (0.51, 0.36, 0.13) (0.33, 0.33, 0.33) (0.50, 0.36, 0.14)
500 20 (0.52, 0.34, 0.15) (0.33, 0.33, 0.33) (0.52, 0.30, 0.18)
500 50 (0.43, 0.53, 0.04) (0.37, 0.32, 0.32) (0.49, 0.34, 0.17)
500 100 (0.32, 0.54, 0.14) (0.34, 0.34, 0.32) (0.49, 0.31, 0.20)
500 500 (0.31, 0.56, 0.13) (0.38, 0.30, 0.32) (0.50, 0.32, 0.18)
500 1,000 (0.30, 0.58, 0.12) (0.42, 0.31, 0.27) (0.52, 0.32, 0.16)
500 3,000 (0.31, 0.57, 0.12) (0.45, 0.31, 0.24) (0.51, 0.33, 0.16)

1,000 1 (0.44, 0.46, 0.13) (0.33, 0.33, 0.33) (0.52, 0.28, 0.20)
1,000 5 (0.46, 0.41, 0.13) (0.33, 0.33, 0.33) (0.51, 0.30, 0.18)
1,000 10 (0.46, 0.42, 0.12) (0.33, 0.33, 0.33) (0.53, 0.27, 0.19)
1,000 20 (0.50, 0.30, 0.19) (0.33, 0.33, 0.33) (0.51, 0.30, 0.19)
1,000 50 (0.34, 0.51, 0.15) (0.31, 0.40, 0.29) (0.49, 0.31, 0.20)
1,000 100 (0.33, 0.52, 0.14) (0.36, 0.33, 0.31) (0.49, 0.32, 0.19)
1,000 500 (0.16, 0.79, 0.05) (0.46, 0.31, 0.23) (0.49, 0.34, 0.20)
1,000 1,000 (0.25, 0.65, 0.10) (0.43, 0.34, 0.22) (0.48, 0.32, 0.20)
1,000 3,000 (0.26, 0.63, 0.11) (0.46, 0.32, 0.22) (0.50, 0.31, 0.19)

Table 6: Probabilities for Biogeme without (Bio1) and with (Bio2) BHAMSLE (B) starting
point on a latent class logit model with synthetic choices (N = population size, R = number
of draws)

optima, bridging the gap between choice-based optimization and choice model estimation, and pro-
viding a novel method for robust initialization for complex estimation problems. We demonstrate
through numerical experiments that BHAMSLE is effective in improving log-likelihood values for
both latent class logit and latent class mixed logit models, achieving gains of up to 10% for observed
choices and up to 16% for synthetic choices. Additionally, the results highlighted the heuristic’s
ability to recover latent population segments, even in complex scenarios involving mixed parameters
and restricted choice sets. While the current state-of-the-art software, PandasBiogeme, remains
computationally faster for standard initializations, BHAMSLE offers a significant advantage by
reducing the need for costly random re-initialization, particularly in settings where achieving an
accurate fit is crucial. The proposed method is general and can be applied to any DCM. Future
research should thus focus on extending the application of BHAMSLE to more complex DCMs,
exploring its performance under different model specifications and real-world datasets, and inte-
grating it with parallelization techniques to further enhance computational efficiency.
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