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Short summary

Among the recently identified Big Data sources identified for mobility analysis, Mobile Phone
Data (MPD) has been is considered as a promising passive source of information to complement
traditional travel surveys thanks to large samples that are not limited to one mode of transport.
Unlike individual MPD, aggregated MPD avoids privacy concerns and can be collected over long
periods of time, but it only provides the number of people in a given area during a given time
interval and requires further processing for mobility management. This paper therefore proposes a
theoretical framework for generating OD matrices from AMPD, using methods derived from traffic
counts. To ensure proper data transformation, several algorithms are tested, first in simulation
and then using real data. The results demonstrate the potential of AMPD to generate high quality
OD matrices on a continuous basis.
Keywords: Big Data Analytics, Transport demand analysis, Mobile Phone Data, Origin-Destination
matrix

1 Introduction

Household Travel Surveys have long been the primary data source in transport studies, provid-
ing tools such as origin-destination (OD) matrices for studying mobility behaviors and planning
transport services. However, they face limitations such as low frequency, small sample sizes, and
the inability to capture less used modes or weekend/holiday travel patterns. With increasing un-
certainty and rapid changes in mobility behavior, new passive data sources have been explored
to complement these surveys and overcome their limitations. Among these data sources, Mobile
Phone Data (MPD) are particularly promising, as they provide large-scale; continuous data, col-
lected from larger samples and from users of all transport modes (unlike, for example, smartcard
data, which only collects data from public transport users).
Among MPD, two types of datasets coexist : individual datasets, that follow users throughout
a day or a week, allowing OD matrices to be built directly from the traces, but that are limited
to smaller samples and time periods due to privacy concerns; and aggregated datasets (AMPD),
which do not suffer from these privacy limitations but provide very raw information (a number of
persons per zone or per OD pair, per time interval). AMPD provided by OD pair have shown a
good correlation with other data sources, but may underestimate short trips because they mostly
use a time threshold value to define a trip from individual traces (Dypvik Landmark et al., 2021;
Casassa et al., 2024) and are also limited by anonymization thresholds.
AMPD provided by zone have been less explored, while they are less limited by these thresholds and
can provide interesting information on mobility behaviors with further processing. However, to our
knowledge, their potential to generate Origin-Destination (OD) matrices has been underexplored.
Our motivation is to exploit these data to their full potential. To this end, we draw an analogy with
traffic counts data, as both data sources provide information on the number of individuals passing
through a given zone. Our research objectives are to: (1) develop a theoretical framework to con-
vert AMPD zonal data into variables similar to traffic counts data, which we will call cellcounts,
(2) test existing methods for building OD matrices from traffic counts data with cellcounts data
and (3) evaluate the transferability of this approach through simulations and real data experiments.
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2 Methodology

The AMPD studied in this paper consist of three indicators: a Presence indicator n, an Entrance
indicator e and an Occupancy indicator o. Each indicator is provided for each zone i, for a 1h
interval ∆tk. The indicators are defined as follows:

• ni(∆tk) is the number of persons who were detected at least once in i during ∆tk;

• ei(∆tk) is the number of persons who were detected at least once in i during ∆tk and who
were not detected in i during ∆tk−1;

• oi(∆tk) is the number of persons who spent the relative majority of ∆tk in i.

Our framework is based on an analogy between the AMPD and traffic counts: in both cases, an
individual going from i to j triggers events (mobile phone events or traffic counts) along the way.
If the routes from i to j are known for all OD pairs, the sum of a given counter ("mobile phone
network" counter or classic traffic counter) can be expressed as the sum of the flows of all OD pairs
passing through it. For the AMPD data, the problem can be formulated as follows:

For a given time interval ∆t, for each ij pair where i ̸= j,

find tij(∆t) so that ∀k ∈ Z :


xk(∆t) =

∑
ij∈Z2 tij(∆t)πk

ij

vj(∆t) =
∑

i∈Z,i̸=j fij(∆t)

wi(∆t) =
∑

j∈Z,j ̸=i tij(∆t)

(1)

with:

• vj(∆t) is the number of persons who are present in j when ∆t ends, i.e. the entering persons;

• wi(∆t) is the number of persons who are present in i when ∆t starts, i.e. the persons leaving;

• xk(∆t) is the number of persons who cross zone k during ∆t without staying in zone k,
which is the variable analog to traffic counts. We will call this variable cellcounts;

• Z is the set of zones in the studied area ;

• tij(∆t) is the number of persons going from i to j during ∆t (flow);

• πk
ij is the proportion of the flow from i to j going through k, which depends on the affectation

model used to calculate the itineraries.

The pipeline to obtain an OD matrix is divided into two stages: (S1) obtaining the cellcounts values
xi(∆t), the cellcounts sums vi(∆t) and wi(∆t), as well as the number of intrazonal trips ui(∆t)
from the AMPD datasets, and (S2) solving the problem (1), which is identical to the fundamental
problem of obtaining the OD matrix from traffic counts.
To obtain the variables in (S1), we relied on the link between the cellcounts and the information
in the AMPD. We have added the relationship between the variables at ∆tk and a ∆tk+1 due to
the conservation of the number of persons between the two time intervals. We have added three
parameters pvi(∆t), pwi(∆t) and pxi(∆t) corresponding to the proportion of users vi(∆t), wi(∆t)
and xi(∆t) who spent the majority of ∆t in i and are counted as occupants oi(∆t) in the AMPD.
We obtain the following system of equations:

ni(∆t)
oi(∆t)
ei(∆t)

ni(∆t+ 1)− ei(∆t+ 1)

 =


1 1 1 1
1 pvi(∆t) pwi(∆t) pxi(∆t)
0 1 0 1
1 1 0 0



ui(∆t)
vi(∆t)
wi(∆t)
xi(∆t)

 (2)

which is invertible when pvi + pwi − pxi ̸= 1, allowing us to obtain expressions for the cellcounts
xi as well as the cellcounts sums vi, wi and the intrazonal trips ui.
The pipeline for (S1) also includes a module to obtain the parameters pvi, pwi and pxi from a
random draw guarantying that the cellcounts are positive.
Once the cellcounts have been obtained, the fundamental traffic counts equation can be applied
and solved in (S2).
To solve this fundamental traffic counts equation, we test the classic methods described in Bera
& Rao (2011): a Gravity Matrix model (GM), simple Least Squares (LS), Entropy maximization
(EM), Bayesian Inferences (BI), Generalized Least Squares (GLS) and Maximum Likelihood (ML).
We also test the Weighted Data Fusion (WDF) method developed by Sun et al. (2023). Although
these methods are neither the latest nor the most advanced, they are the most tried-and-tested
and transparent methods for this problem, giving us greater control over our results.
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3 Results and discussion

Two cases were studied: a simulated case, necessary to obtain accurate comparative data to test the
pipeline, and an experimental case to conclude on the replicability of our method. The experimental
case focused on the city of Rouen, France, where a recent survey is available to assess the results.
The simulated case was developed on the city of Rodez, France, a simple and small monocentric
city to use as a sandbox.

Simulated case

To obtain the simulated data, we derived the expected OD flows and AMPD from a set of simulated
trips in the Rodez area (Aveyron, France), divided into 28 zones. We generated synthetic trips for
N=63,473 persons (population of the area in 2023), for a weekday morning, based on the workplaces
and places of study of the French Census. Although these databases only contain commuting trips,
they can give a plausible approximation of the flows in the area on a morning, which we can use
for the simulation.
The simulation is first run 25 times. As can be seen in figure 1, obtaining the cellcounts xi in
(S1) of the pipeline gives very good results, with a quasi-null dissimilarity index and a very small
RMSN=0.13 ± 0.01.
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Figure 1: Distribution of the indicators obtained for the 25 iterations of the simulation in
Rodez.

Once the cellcounts are obtained, we run 10 simulations applying each of the methods listed in the
methodology. Some of these methods require prior knowledge of the OD flows that are updated, or
a sample matrix to use as a constraint : we used an OD matrix derived from the AMPD using the
gravity model method, that requires no parameters or assumptions. For the methods depending on
constrained optimization processes with constraints on the counts, we added tests with constraints
corresponding to the occupancy oi and to the information we have on the margins of the MOD (the
total of persons entering or leaving a zone i, i.e. the cellcounts sums vi and wi). Several tolerances
ξmargins, ξcounts and ξpop were tested for these constraints. Finally, some methods depend on
parameters, for which different values were tested : weights of the datasets wMOD and wcounts

in the WDF method, distribution forms of the variables in the ML method. For each test, we
compute the RMSN and MAE between the computed OD flows and the expected OD flows (see
figure 2 and table 1).

Results are consistent from one run of the simulation to the other, as the points are fairly grouped
for each test reference. The methods with ξmargins = 0.0 in the optimization process generally
do not converge. This was to be expected, as the computed margins vi and wi are not exact
(see figure 1), and should therefore not be used in strict constraints. The Maximum Likelihood
approach is the least performing, which could be explained by the fact that the "sample" matrix
is the Gravity Model matrix, already biased. The weighted data fusion method from Sun et al.
(2023) gives better results. The best performing method seems to be the Entropy Maximization,
with parameters ξcounts = 0.1, ξmargins = 0.2, ξpop = 0.05. These parameters seem quite logical
with the rest of the results: the largest tolerance is for the cellcounts sums, and the tolerance for
the cellcounts themselves is smaller and around the RMSN value obtained in figure 1. Finally, the
tolerance for the total population is quite small, as this is the most certain data.
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Figure 2: Results for 10 simulations, using the gravity model matrix as an initial/samples
matrix. Each marker represents a different simulation. For frameworks with multiple
parameters, only the best 10 sets of parameters (on average) were plotted.

Table 1: Results for the 10 simulations plotted in figure 2. Only the best set of parameters
for each methods (on average among the simulations) is shown.

RMSN MAE ξpop ξmargins Other parameters
Framework
Gravity Model
(Initialization) 1.133 0.701

BI 1.137 0.712
EM 0.607 0.600 0.05 0.2 ξcounts= 0.1
GLS 1.133 0.701
LS 1.332 0.943 ∞ ∞

ML 1.542 1.186 0.2 0.5 Sample distribution: Poisson
Counts distribution: MVN

WDF 0.852 0.901 ∞ ∞ wMOD: 1.0
wcounts: 0.25

To improve these first results, we then implement sequences of methods, starting with the GM,
then the EM with ξcounts = 0.1, ξmargins = 0.2, ξpop = 0.05, then other methods. We repeat these
sequences 10 times again. Results are shown in figure 3 and are compared with the previous steps
(table 2). There are still errors, which is consistent with the under-specification of the problem,
but the results are improved for all methods compared to the previous experiments.
This improvement is very important for frameworks like GLS and BI, which mostly depend on the
previous or initial matrix. A longer sequence would probably not improve anymore the results, as
they are all close to the EM matrix. The best RMSN is obtained with the WDF method. The
MAE is larger than that of the initialization, which means that there are relatively more small
errors and fewer large errors. Figure 4 shows that, for this sequence, the points are grouped around
the identity line and no big deviation is observed: in general, the results are in the right order of
magnitude.
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Figure 3: Results for 10 simulations, using the best Entropy Maximization matrix as an
initial/samples matrix. Each marker represents a simulation. For frameworks with multiple
parameters, only the best 10 sets of parameters (on average) were plotted.

Table 2: Results for the 10 simulations presented in figure 3. For frameworks with multiple
parameters, only the best set of parameters (on average among the simulations) is shown.

RMSN MAE ξpop ξmargins Other parameters

Framework
EM (Initialization) 0.6112 0.6009 0.05 0.2 ξcounts= 0.1
BI 0.6156 0.6178
BI then GLS 0.6109 0.6028
GLS 0.6113 0.6032
GLS then BI 0.6152 0.6174

GLS then ML 1.1381 1.0366 ∞ 0.5 Sample distribution: Poisson
Counts distribution:MVN

LS 1.2616 0.9482 ∞ ∞

ML 1.1381 1.0366 ∞ 0.5 Sample distribution: Poisson
Counts distribution:MVN

WDF 0.5791 0.6994 0.1 ∞ wMOD: 0.75
wcounts: 0.25
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Figure 4: Results for the sequence Gravity Model, then Entropy Maximization, then
Weighted Data Fusion. Each color corresponds to a run of the simulation.
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Experimental case

Aggregated Mobile Phone Data used for this part were collected in the area of Rouen (Normandy,
France) (table 3), divided into 484 zones, which is much larger than our simulated case. Mobile
Phone Events were collected on Tuesdays from 2023/11/06 to 2023/12/17, a period with school
holidays, and have an average inter-event time of 122±479 s, which ensures good tracking of
the devices. They were compiled and extrapolated by Orange using its local market share, socio-
demographic characteristics, as well as spatial and temporal corrections. The results of our pipeline
are compared with the 2017 Rouen mobility survey (EMD), conducted in the same area on 2.27%
of the residents.

Indicator Values
mean ± std (median)

Total number of persons present in the studied area
(sum of the occupancies in the studied area)

599,330

Occupancies per zone (oi) 1371.5 ± 1100.6 (1093)
Presences per zone (ni) 7109.8 ± 6693.8 (4923.5)
Entrances per zone (ei) 5097.6 ± 5046.4 (3471.8)
Cellcounts per zone (xi) 3285.1 ± 3535.3 (2100.3)
Cellcounts sum of entering flows per zone (vi) 1812.5 ± 2114.3 (1061.7)
Cellcounts sum of leaving flows per zone (wi) 1683.5 ± 1791.3 (1045.6)

Table 3: Characteristics of the AMPD dataset and the derived variables.

The best method identified with the simulation is run with the AMPD of the studied area of
Rouen : a Gravity Model matrix for the initialization, then an Entropy Maximization method
with parameters ξcounts = 0.1, ξmargins = 0.2, ξpop = 0.05. From an aggregated point of view, the
total number of interzonal trips is similar between both datasets : 68,305 for the survey and 82,053
for the AMPD. The higher value in the OD matrix extracted from the AMPD could be explained
by the increase in the population between 2017 and 2023, and by the restriction to residents in the
survey. Indeed, the AMPD include everyone who was present in the area, including non-residents,
tourists and people who travelled through the city. Although this information may seem like noise,
having data on non-residents is an interesting improvement over traditional surveys. On average,
there was 609.9 ± 924.3 trips in the survey compared to 732.6 ± 1086.5 in the AMPD, a similar
order of magnitude.
Comparing OD flows from the survey and from the OD matrix dervied from the AMPD, we obtain
a Pearson coefficient of 0.93420 with a p-value less than 10−6, showing a good correlation between
the datasets. The error indicators are RMSN = 0.6803 and MAE = 0.5264, close to those
obtained in the simulated experiment, and quite satisfactory. Finally, a linear regression between
the two vectors gives a slope a = 1.098 and an intersection b = 62.9, with r2 = 0.87278, which
shows the overestimation of the OD flows extracted from the AMPD compared to the OD flows
from the survey but also the very good correlation between the two data sources.
Finally, the graphical comparison shown in figure 5 shows that the points are grouped around the
identity line, as obtained with the simulation experiment. The overestimation of the OD flows
extracted from the AMPD compared to the EMD flows is also visible, and shows that it does not
induce a major deviation for a given OD pair, but rather a constant ratio.

Discussion

Our results are satisfactory at this proof-of-concept stage, showing good correlation and order of
magnitude in both the simulated and experimental results. Results could be improved by using
more recent and advanced frameworks used for traffic counts data analysis, such as those based on
machine learning or artificial intelligence. In the experimental case, data had to be aggregated to
the zoning of the survey, which is much less precise than the zoning for the AMPD. Although the
correlation is good at the aggregated level, we have no information about the quality of our results
at the disaggregated level. Further research could include a comparison with yet another data
source to improve this validation. Other interesting steps could include adding other data sources
to our methods, such as a precompiled OD matrix from mobile phone data that uses thresholds to
define the trips, to see if this improves our results.
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Figure 5: Experimental results of the sequence in the Rouen area.

4 Conclusions

In this paper, we have shown that it is possible to derive cellcounts indicators similar to traffic
counts data from an Aggregated Mobile Phone Data dataset containing only Presence, Entrance
and Occupancy indicators. These cellcounts can be used to derive OD flows matrices using the
methods developed for traffic counts data. Several methods were tested for this purpose, the most
relevant being a sequence of Gravity Model followed by Entropy Maximization, then a Weighted
Data Fusion process developed by Sun et al. (2023), which results in an average RMSN of 0.579 in
a simulated case. The simulation results are consistent from run to run. From a more qualitative
point of view, the obtained OD flows are in the same order of magnitude as the expected ones,
which is a crucial characteristic for transport planners to develop adequate transport offer. We
proposed to transfer our simulated results to an empirical case in the city of Rouen, France.The
comparison between a computed OD matrix and the flows obtained from the survey shows that
the OD flows extracted from the AMPD, once aggregated to the survey zoning, give coherent
values for the morning time interval, with a RMSN of 0.6803. These results tend to support the
hypothesis that the framework is transferable from a simulated case study to an empirical case
study, and therefore that Aggregated Mobile Phone Data can provide useful insights into mobility.
The information obtained is complementary to traditional surveys: although we do not have any
socio-economic or purpose information for the trips, AMPD are available for any time of the day,
day of the week and period of the year and could allow for longitudinal studies, and are not
restricted to a predefined administrative area. Finally, although we have focused here on MPD,
our framework could theoretically be applied to any type of passive data that can provide presence
data, entrance data and occupancy data, such as Bluetooth or Wifi counters, or even satellite
images. Another way forward would, therefore, be to test our framework with other types of data
sources.
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