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Short summary

This paper introduces a novel framework for generating longitudinal synthetic populations that
track individuals over time, addressing limitations of traditional snapshot-based synthetic pop-
ulation methods. We propose a Gibbs sampler-based approach that combines models and cross-
sectional data to generate universal, time-independent variables, which enable the consistent deriva-
tion of time-specific synthetic populations at any point in time. A key advantage of this framework
is that any changes to the universal dataset are automatically reflected in derived datasets, allowing
for efficient scenario testing. The methodology is demonstrated using Swiss Mobility and Trans-
port Microcensus data, by simulating the impacts of hypothetical events such as pandemics. This
approach ensures temporal consistency, captures individual-level dynamics, and reduces the com-
putational burden of regenerating populations, showcasing its potential for activity-based modeling
and long-term policy analysis when real longitudinal data is unavailable.

Keywords: Activity-based models, Longitudinal data, Population dynamics, Pre- and post-
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1 Introduction

State-of-the-art methods for synthetic population generation typically produce cross-sectional data
for a single point in time, creating a synthetic snapshot of socio-demographics and long-term
lifestyle and mobility decisions of individuals. As demographic changes occur in the real popu-
lation, synthetic snapshots quickly become outdated, requiring complete regeneration to update,
which is both repetitive and computationally expensive. Moreover, generating snapshots indepen-
dently leads to inconsistencies over time, limiting their usefulness for long-term forecasting. To
address this issue, methods for evolving synthetic snapshots have been introduced (Bhat et al.,
2004; Lomax et al., 2022; Prédhumeau & Manley, 2023). However, they often work at an aggre-
gated level, focusing on changes in marginal distributions rather than capturing detailed individual
dynamics. Also, they simulate common demographic events such as births, deaths, and migrations,
which may result in non-representative synthetic data during long-term forecasting that might in-
volve unexpected events (e.g., COVID-19) (Kukic & Bierlaire, 2024). Limited data on the same
individuals over time (i.e., longitudinal data) limit models that rely on individual-level insights
(e.g., activity-based models), leading to focusing on a single point in time (Zhang et al., 2021).

In the literature, several studies have analyzed real longitudinal data to assess how life events im-
pact travel behavior. For instance, Beige & Axhausen (2017) emphasize the interconnected nature
of life choices, demonstrating through longitudinal data from Switzerland that decisions related
to residence, employment, and commuting modes evolve together over time. Similarly, Ahmed &
Moeckel (2023) show that while travel behavior is generally stable, life events such as employment
changes or relocations lead to incremental changes rather than abrupt shifts. Both studies empha-
size the importance of longitudinal datasets in distinguishing between attributes that remain stable
over time (e.g., driving license ownership) and those that change in response to specific life events
(e.g., commuting frequency). Their findings underscore the limitations of existing population mod-
els, which overlook the incremental and interconnected nature of such changes. To address these
limitations, synthetic longitudinal data is needed to enable dynamic modeling that reflects both
stability and behavior variability, thereby improving long-term forecasting accuracy.
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To address these problems, we propose a novel method that utilizes the Gibbs sampler to generate
longitudinal synthetic individuals, enabling us to follow the same synthetic individuals over time.
Our method generates a universal set of time-independent synthetic variables only once, from
which we can then derive a set of time-dependent synthetic variables at any point in time t. That
way our model: (i) ensures internal consistency across time by using a single set of universal vari-
ables, avoiding discrepancies seen in independently generated snapshots, (ii) offers more efficient
derivation of time-specific data compared to full data regeneration, (iii) provides disaggregated
information on the same individuals over time, which offers richer insights compared to having
only aggregated sociodemographic marginals, and (iv) enables flexibility, as changes to the univer-
sal dataset are reflected in all derived datasets, allowing for rapid testing of scenarios like natural
disasters or pandemics. In the case study, we demonstrate the generation of an initial universal
synthetic dataset, either using assumed priors or conditionals calibrated using Swiss Mobility and
Transport Microcensus (MTMC) data (Swiss Federal Office of Statistics, 2012;2018;2023). Using
a universal dataset, we simulate the effects of a pandemic that affects older individuals, ensuring
the impact is reflected across all derived datasets with a single simulation.

2 Methodology

Rather than treating variables such as age, level of education, home location, and driving li-
cense as static attributes observed at a single point in time, we model them as dynamic variables
that evolve over time. These variables can either be represented as functions of time, such as
age(t), level of education(t), home location(t),driving license(t), or described by associating spe-
cific events with their corresponding durations. For example:

• Age(t) is defined by the event of birth and the duration of a lifespan.

• Level of education(t) corresponds to the date of degree completion and the time until the
next degree.

• Home location(t) is characterized by the date of relocation and the duration until the
next move.

• Driving license(t) is associated with the date of acquisition and the time until revocation.

We denote ei, i = 1, . . . , N as the list of events and di, i = 1, . . . , N as the corresponding durations.
Together, these variables constitute what we refer to as universal variables. While the method can
accommodate a wider range of variables, for simplicity, we demonstrate its applicability using
{(ei, di) | i = 1, 2, 3} set of descriptors, where e1 is the date of birth, d1 is the lifespan, e2 is
acquisition date of driving license, d2 is the time until its revocation. For simplicity, we assume
that the driving license is irrevocable once obtained (i.e., e1+d1 = e2+d2) though this assumption
can be relaxed if necessary. Also, we assume time is discretized into one-year intervals, meaning we
consider the year of each event instead of exact dates. Although sex is a time-invariant variable,
we can model it using the same framework for consistency. Thus, e3 represents the assigned sex at
birth and it is assumed to be invariant over time, i.e., d3 = d1.

Knowing these variables allows for the deterministic reconstruction of time-dependent variables at
any time. Thus, we define time-dependent variables xit and yit, for each i, and any time t, as:

xit = 1(ei ≤ t < ei + di)

and
yit = t− ei.

The indicator function xit equals 1 if the event ei has occurred and the duration has not elapsed at
time t, and 0 otherwise. Similarly, yit represents the elapsed time since the event. For each previ-
ously defined {(ei, di) | i = 1, 2, 3}, we define corresponding {(xit, yit) | i = 1, 2, 3}. For example, if
we know the date of birth e1 and the lifespan d1, x1t is an indicator that equals 1 if the individual
is alive at time t and 0 otherwise, and y1t represents the age at time t. Similarly, if we know the
acquisition date of a driving license e2 and the time until its revocation d2, x2t indicates if the
individual has a driving license at time t, and y2t measures how long the person has had the li-
cense at time t. Knowing e3 and d3, x3t indicates that sex is assigned, and y3t encodes the sex itself.
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The objective of our dynamic synthetic population method is to generate universal variables
e1, d1, · · · , eN , dN to describe the lifetime of each individual. If the data is not available, each
universal variable can be generated using assumed priors. We assume that e1 follows a uniform
distribution over the time horizon of interest, as it provides a neutral prior and avoids favoring
any specific period when no empirical data is available (Gilbert & Troitzsch, 2005). For d1, we
use the Weibull distribution, as it is a common choice in survival analysis and aligns well with
observed lifespan data, providing an accurate representation of the variability in human lifespans
(Mahevahaja & Josoa Michel, 2023). e2 follows a shifted lognormal distribution starting at age 18,
as it captures the skewed nature of the age distribution for drivers, where licensure rates increase
at 18 but a significant minority delays licensure due to socioeconomic and motivational factors
(Tefft et al., 2014). Sex (e3) is modeled as a Bernoulli random variable to reflect its binary na-
ture and to provide a simple yet realistic representation consistent with available demographic data.

However, access to real cross-sectional data enables the integration of insights from observed distri-
butions and facilitates sampling from posterior distributions rather than relying on assumed priors.
Assume that snapshots of cross-sectional data are available at specific time points, providing par-
tial information about the distributions of variables x and y. For instance, if the age distribution
of individuals alive at time t is known, it represents the conditional distribution y1t | x1t. Our
proposed method aims to generate (e1, d1, . . . , eN , dN ) by incorporating the information on x and
y extracted from the available data, leveraging the concept of state augmentation.

To formalize the methodology we first define the “life indicators”. They play a crucial role in the
model because they determine which cross-sectional data are relevant for each individual. While
the variables x11, x12, . . . , x1T were introduced earlier, they are now grouped into the vector to
highlight their specific function in the model as follows:

Z = (x11, x12, . . . , x1T).

Also, we denote Xt the set of relevant variables at time t, without the life indicator:

Xt = (y1t, x2t, y2t, · · · , xNt, yNt).

We build on static synthetic population methods by assuming that, for each t = 1, · · · , T , we can
draw from the random vector

(Xt|x1t) = y1t, x2t, y2t, · · · , xNt, yNt|x1t,

where x1t is the indicator of being alive at time t. This can be done using Gibbs sampling methods.

The objective now becomes to draw from the vector of random variables:

e1, d1, · · · , eN , dN , Z,X1, · · · , XT .

To implement that, we have to draw from each group of variables conditional to others as follows:

1.
Z,X1, · · · , XT |e1, d1, · · · , eN , dN

is deterministic. Indeed, as previously mentioned, if we are given the time of each event,
and its duration, we can deterministically reconstruct the x and y variables.

2.
di|e1, d1, · · · , eN , dN , Z,X1, · · · , XT

is simplified to
di|e1, d1, · · · , eN , dN ,

as the cross-sectional data do not provide any information about duration. Thus, we can
derive the distribution of duration using the priors.

3. To draw from
ei|e1, d1, · · · , eN , dN , Z,X1, · · · , XT

we can use a Bayesian approach. This posterior distribution is proportional to the likelihood
times the prior distribution. As Z is given, we know what pieces of data are relevant. Assume

3



that it is X1, · · · , Xs, s ≤ t, meaning that the individual is alive at time s, but not at time
s+ 1. Given that, the likelihood

X1, · · · , XT |e1, d1, · · · , eN , dN , Z,

is approximated by
X1, · · · , Xs|Z.

Assuming conditional independence, we use the static population synthesis for each time t:

Pr(X1, . . . , Xs | Z) =

s⋃
t=1

Pr(Xt | x1t).

The prior ei|e1, d1, · · · , eN , dN is assumed to be given.

3 Results and discussion

In this section, we aim to: (i) demonstrate the feasibility of generating a universal dataset with
time-independent variables that enable the derivation of consistent time-specific synthetic popula-
tions, (ii) demonstrate how unexpected events can be applied to the universal dataset and reflected
in all derived datasets, and (iii) test the impact of hypothetical scenarios in both short- and long-
term simulations. In Figure 1, we illustrate the steps of the conducted case study. Since variables
such as d2 and d3 are equivalent to lifespan d1, they are excluded from the illustration.

Synthetic Universal Data

e1 d1 e2 e3
1986 50 2004 M
2005 50 2023 F
2005 11 -1 M
1968 20 1986 F

Real data
2010

Real data
2020

Pandemic
Update the first person
that is affected in 2015:
(1986, 29, 2004, M)

Step 1:
Generate

Step 2:
Simulate

Synthetic data
2015

x1,2015 y1,2015 x2,2015 y2,2015 x3,2015 y3,2015
0 29 1 11 1 M
1 10 0 0 1 F
1 10 0 0 1 M
0 20 1 2 1 F

Synthetic data
2010

x1,2010 y1,2010 x2,2010 y2,2010 x3,2010 y3,2010
1 24 1 6 1 M
1 5 0 0 1 F
1 5 0 0 1 M
0 20 1 2 1 F

Synthetic data
2020

x1,2020 y1,2020 x2,2020 y2,2020 x3,2020 y3,2020
0 29 1 11 1 M
1 15 0 0 1 F
0 11 0 0 1 M
0 20 1 2 1 F

Step 3: Derive

Figure 1 – The framework for generating synthetic longitudinal data

First, the synthetic universal dataset is generated using two approaches: priors alone and priors
refined with insights from the MTMC data from 2010 and 2020, following the procedure outlined
in Section 2. In Figure 2, we compare the resulting lifespan distributions from these approaches.
Incorporating real data into the priors produces distributions that more closely align with observed
patterns. For example, data from 2010 and 2020 indicate that individuals born in 1961 typically
live between 50 and 100 years, with no observations outside this range. Real data define the bounds
for lifespan, whereas using priors results in having more variability, with values beyond realistic
lifespans.
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Figure 2 – Conditional distributions of lifespan given birth year from synthetic universal
datasets generated from priors (left) or data (right)

After generating the universal dataset, we can derive synthetic datasets for any time t as shown
in Section 2, enabling tracking of individuals over time. The key advantage is that the universal
dataset is generated only once, and any change to it is reflected in all derived datasets. To illustrate
this, we simulate a hypothetical pandemic scenario using the universal dataset as a baseline.
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Figure 3 – Simulation of the normal (left) and hypothetical disaster (right) scenarios

Figure 3 shows the normal and disaster scenarios. In the normal case, we derive synthetic samples
from the universal dataset for 2010 and 2020 that reveal the age distribution shift, with some
births in 2020 and a small percentage passing away by the year-end. Then, we simulate the 2015
pandemic on the universal dataset by imposing a 70% mortality rate on individuals aged over 50.
We randomly select those considered elderly by 2015 and adjust their lifespans to reflect the event.
Using this updated universal dataset, we derive new synthetic data. In the disaster scenario, the
sample from 2010 remains the same, while more elderly people died by 2020.

Figure 4 illustrates the setup for testing how the choice of time step s affects the visibility of
pandemic effects relative to the year t in which the pandemic occurred. By comparing death rates
at t − s and t + s (see Table 1), we analyze the extent to which the disaster’s impact can be
identified over varying temporal distances.

t = 20152010 20202005 20252000 2030

s = 5s = 5

s = 10s = 10

s = 15s = 15

· · · · · ·

Figure 4 – The effect of time step s on identifying pandemic impacts around year t

We calculate the death rate for both scenarios as the difference between the death percentage
at t + s and t − s, divided by the time step s. Since no pandemic has occurred before t, the
death percentage at t− s is the same for both scenarios. The disaster becomes evident through a
significant spike in the death rate for smaller time steps (e.g., s = 5), with the death rate in the
disaster scenario being 5.5 times higher than in the normal scenario. For larger steps (e.g., s ≥ 25),
the natural rise in deaths hides short-term effects, making the disaster harder to detect.

Time Step
s

Death % at
t− s

Death % at
t+ s

Normal

Death % at
t+ s

Disaster

Death Rate
Normal
(DRn)

Death Rate
Disaster
(DRp)

DRp

DRn

5 0.17 1.02 4.86 0.17 0.94 ≈ 5.5
10 0.12 8.83 11.91 0.87 1.18 ≈ 1.4
15 0.10 17.50 19.92 1.16 1.32 ≈ 1.1
20 0.07 26.66 28.63 1.33 1.43 ≈ 1.1
25 0.07 37.07 38.47 1.48 1.54 ≈ 1

Table 1 – Comparison of cumulative death percentages and death rates for t = 2015 for
different time steps in normal and disaster scenarios

4 Conclusions

This paper introduces a model that generates synthetic universal variables, allowing the derivation
of synthetic populations at any time point without recalibration while capturing individual-level
changes. We demonstrate how a Bayesian approach can be adapted to integrate models and data,
enabling the generation of synthetic longitudinal data that leverages insights from available real
cross-sectional data. We also show its ability to simulate short- and long-term impacts of hy-
pothetical scenarios, such as pandemics. The model is both efficient and flexible, as it ensures
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consistency over time and enables rapid scenario testing (e.g., war, hazards, etc.), making it valu-
able for analyzing trends when real longitudinal data is unavailable. In the future, the model
should accommodate a broader range of variables (e.g., level of education, home location, income)
and potentially be expanded from the individual to the household level.
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