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Abstract

The last-mile delivery problem is a critical challenge in urban logistics due to high costs, traffic
congestion, and environmental impacts. Sidewalk delivery robots offer a promising solution for
urban areas, providing safer and higher-capacity alternatives to drones. However, their efficiency
is significantly affected by unreliable travel times on sidewalks. This study addresses the robust
shortest path problem (RSPP) for sidewalk robots, explicitly accounting for travel time uncer-
tainty due to varying sidewalk conditions such as density and obstacles. We integrate optimiza-
tion with simulation, using generated travel times to derive alternative uncertainty sets (budgeted,
ellipsoidal, and SVC-based). This approach is applied to a realistic case study reproducing pedes-
trian patterns in Stockholm’s city center (Sweden) and examines the economic efficiency of robust
routing under various robot design and environmental factors. Results demonstrate that robust
routing significantly improves operational reliability under variable sidewalk conditions compared
to traditional methods.

1 Introduction

The last-mile delivery problem represents one of the most challenging aspects of modern logistics due
to its cost, increased traffic congestion, and environmental impacts, particularly in urban areas (Boysen
et al., 2021). The growing demand for e-commerce and the need for faster and more reliable deliveries
have led to the development of innovative solutions such as drones and autonomous ground robots
(Jennings and Figliozzi, 2019). Sidewalk robots represent a safer and higher-capacity solution than
drones, while their efficiency can be significantly affected by factors like pedestrian traffic, terrain,
road conditions, obstacles, and weather (Heimfarth et al., 2022). These external variables introduce
substantial uncertainty in travel times. Existing approaches relying on static travel times for sidewalks,
risk leading to suboptimal decisions in operational and strategic problems, such as routing, location,
assignment, due to delays.

In this study, we address the robust shortest path problem (RSPP) for sidewalk delivery robots.
Unlike “traditional´ shortest path problems, the RSPP explicitly accounts for travel time uncertainty,
ensuring more reliable routing solutions under variable sidewalk conditions. To increase the realism,
our approach integrates optimization with pedestrian simulation to generate sidewalk travel times.
We investigate alternative uncertainty sets (budgeted, ellipsoidal, and kernel-based support vector) to
solve the RSPP. We model the sidewalk robot navigation within a realistic urban pedestrian network
based on Stockholm, Sweden, and provide a comprehensive analysis of how design-related factors (e.g.,
robot desired speed, size, maneuverability) affect the efficiency of both traditional routing and robust
routing solutions.
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2 Background

2.1 Sidewalk autonomous delivery robots

Sidewalk Autonomous Delivery Robots (SADRs), a subcategory of Autonomous Delivery Robots
(ADRs), are pedestrian-sized robots designed to travel on sidewalks and deliver items autonomously
(Srinivas et al., 2022). In this paper, the focus is specifically on SADRs, which are referred to as delivery
robots for simplicity. The most common research focus for SADRs is the truck-robot routing problem.
From an operational perspective, robots have notably slower speeds (5–10 km/h compared to 50–100
km/h) and can travel shorter distances (5–10 km compared to 10–30 km). These differences make
robots particularly effective for delivering low-value items in densely populated urban environments
(Simoni et al., 2020). Different ways to combine trucks and robots in delivery have been discussed
by many researchers (Boysen et al., 2018; Liu et al., 2021; Chen et al., 2021). Several studies have
also developed frameworks for robot-only delivery, where parcels are transported exclusively by a fleet
of robots without relying on vehicles like trucks or vans. These frameworks often encompass various
types of delivery robots, not limited to sidewalk robots (Ulmer and Streng, 2019).

Despite these advances, existing research assumes static or simplified travel conditions for the side-
walk robot routing problems, overlooking the impact of variable sidewalk travel times due to congestion
and other factors. Robots, which typically travel at pedestrian speeds, may face significant delays when
navigating crowded or obstructed sidewalks. The traditional shortest path considering length or fixed
travel time may not perform effectively in all scenarios, especially when extreme conditions occur. This
issue remains insufficiently addressed in current sidewalk network robot routing problems. This paper
addresses this gap by incorporating variable travel times for sidewalk robot delivery in congested areas,
providing a more realistic and robust approach for robot-based last-mile delivery operations.

2.2 Robust shortest path problem

The real-world network conditions are often uncertain due to fluctuating travel times, changing road
conditions, or unpredictable delays. To address these uncertainties, the robust shortest path problem
(RSPP) extends the classical SPP by incorporating uncertainty into the model, ensuring that the
chosen path remains effective even under adverse conditions. Commonly used types of uncertainty sets
include convex hull (Kasperski and Zielinski, 2016), intervals (Chassein and Goerigk, 2015), ellipsoid
(Ben-Tal and Nemirovski, 1998), budgeted uncertainty (Goerigk and Schöbel, 2016) and permutohull
(Bertsimas and Brown, 2009). In recent years, novel approaches based on machine learning have moved
beyond traditional uncertainty modeling. Shang et al. (2017) proposed a Support Vector Clustering
(SVC) to construct uncertainty sets, allowing for the dynamic adjustment of uncertainty sets to better
align with observed variability and real-world trends. In this paper, we implement a kernel-based SVC
combined with the TSC algorithm to specifically address the robot delivery RSPP and compare its
performance with two other well-known methods through realistic sidewalk robot delivery simulation
scenarios.

3 Methodological Approach

In this study, the performance of three main RSP approaches in the context of sidewalk robot delivery
is systematically evaluated with the pedestrian simulation data. The framework of the integration of
simulation and optimization is shown below.

In RSPP, the road network segment costs are not precisely known. Based on the set of observations
of costs, the uncertainty set U can be modeled. The RSPP is then denoted as:

min{max
u∈U

uTx : x ∈ X} (1)

which means finding the shortest path in X considering the worst case in U . In this paper, three
different types of uncertainty sets—Budgeted uncertainty, Ellipsoidal uncertainty, and Kernel-based
SVC uncertainty— are employed to solve the RSPP for sidewalk robot navigation.

The Budgeted uncertainty approach (Bertsimas and Sim (2003)) for robust discrete optimization
involves defining each entry uj , j ∈ [n] within the interval [cj , cj + dj ]. In the case of sidewalk robot
navigation, uj represents the robust cost at certain segment j, cj is the minimum observed robot
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Figure 1: Framework for Simulation and Optimization

travel time of segment j, and dj denotes the deviation between maximum travel time and minimum
travel time. The degree of conservatism is controlled by the parameter Γ, which restricts at most
Γ ∈ {1, 2, ..., n} to take values in the interval, while the remaining entries take the minimum values. The
Ellipsoidal uncertainty (Ben-Tal and Nemirovski, 1998, 1999) encompasses various reasonable types of
ellipsoids and the intersections of finitely many ellipsoids. They make the corresponding robust convex
program a tractable problem. An ellipsoidal uncertainty set has a parameter λ ≥ 0 to control the size of
the ellipsoid. The Kernel-based SVC uncertainty approach (Shang et al., 2017) adopts an unsupervised
machine learning algorithm, the Support Vector Clustering (SVC) with the Weighted Generalized
Intersection Kernel (WGIK), which utilizes Support Vectors (SV) to define boundaries in feature space,
grouping data points into clusters by finding the smallest sphere that encloses them. A regularization
parameter v ∈ (0, 1] is introduced to control the conservatism degree of the uncertainty set. It is an
upper bound on the fraction of outliers and a lower bound on the fraction of SVs. This approach not
only manages correlated uncertainties, resulting in asymmetric uncertainty sets, but it also features
adaptive complexity, embodying a nonparametric approach. The convex polyhedral uncertainty set
generated can ensure the robust counterpart problem of the same type as the deterministic problem.
To tackle the challenges of computationally intensity and difficulty in efficiently finding solutions,
the Two-Stage Clustering with Dimensional Separation (TSD-DS) algorithm proposed by Roytvand
Ghiasvand et al. (2024) is employed during application.

The navigation of sidewalk robots in a pedestrian environment is simulated using the Social Force
Model (SFM), which has been extended and implemented in the commercial software PTV VISWALK
(PTV, 2023). SFM, one of the most prominent models for pedestrian dynamics, was originally pro-
posed by Helbing and Molnar (1995). It describes a pedestrian’s motion in the form of an acceleration
or deceleration, resulting from a number of different forces act on the pedestrian such as social, psy-
chological, and physical forces. To date, no study has specifically calibrated SFM parameters for
sidewalk robots within VISWALK. In this work, we draw on the parameters proposed by Truong and
Ngo (2017), who developed an extended SFM for mobile robot navigation in dynamic and crowded
environments. Four parameters are decided to change: τ , Asoc iso, Bsoc iso and λ. The relaxation
time parameter Tau is widely considered to be one of the most influential parameters (Gruden et al.,
2022; Shi et al., 2021) as it defines the time required for a pedestrian to adjust their current speed and
direction to align with their desired speed and direction. Given the conservative design of sidewalk
robots — expected to react more slowly and cautiously than humans — and the calibrated τ value of
1.5 for wheelchairs and stretchers reported by Castro-Quispe et al. (2020), the default τ value is set
to 0.8. The last three parameter values are identical to those used for human repulsive forces in the
extended SFM proposed by Truong and Ngo (2017). In addition, the desired speed of sidewalk robots
is set to a constant value 5 km/h with no deviation, inspired by the robot specs of the Starship Robot
(Starship, 2023). The sidewalk robot is set to the size of an adult male.
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(a) Network in QGIS (b) Network in VISWALK

Figure 2: Refined Pedestrian network in Norrmalm, Stockholm

4 Analysis

The sidewalk robot navigation in a complex urban pedestrian network is simulated using PTV VISWALK.
The input data for the VISWALK simulation comprises road network geometry, pedestrian demand,
and behavioral parameters, and obstacles, calibrated to reflect real-world pedestrian and robot be-
havior. The simulation duration is set as 900 seconds (15 minutes). The constructed pedestrian
origin-destination matrices from 10 a.m. to 10 p.m (12 hours) across different days of the week (7
days) are combined with 12 obstacle scenarios, to constitute 1008 (7 days * 12 hours * 12 obstacle
scenarios) different simulation scenarios. For each scenario, robot travel times on sidewalks can be
summarized into a travel time origin-destination (OD) matrix that is employed in the SPP and RSPP.

The road network used in our analysis is a section of Norrmalm, located in central Stockholm,
Sweden. This area was selected due to its high pedestrian traffic and complex interactions between
obstacles and pedestrians. The network has 99 segments, including 65 sidewalks and 34 crossings
(Figure 2). Note that each segment is bidirectional for pedestrians and robots, thus the robot travel
time OD matrix is 198*198. The pedestrian daily traffic volumes data were obtained from Stockholms
miljöbarometer1, administered by the Environmental Administration of Stockholm. It was further
refined based on the distribution of pedestrian volumes across different days of the week and hours
of the day. To enhance the realism of the simulation, various obstacles were introduced based on
actual street layouts, specifically focusing on sidewalks, to reflect real-world barriers for pedestrians
and sidewalk robots. Obstacles, represented as squares with side lengths randomly varying between
1 and 1.4 meters, were placed at random locations on randomly selected sidewalk segments across 12
scenarios with varying percentages of road coverage (0%, 10%, 20%, 30%, 40%, and 50%), ensuring
diversity through randomized positions and sizes.

We first verify that the optimal paths between fixed node pairs differ across various scenarios.
Only five OD pairs out of 500 random OD pairs maintain the same path under all scenarios. Then
the three RSP methods, each defined by a scaling parameter with 10 possible values, are derived to
determine the robust shortest paths for a set of OD pairs. The conventional optimal paths under the
free flow scenario are also obtained as a benchmark for comparison. A five-fold validation approach is
used to assess robustness, with 80% scenarios for training and 20% scenarios for validation, sampled
from the travel time matrix. The performance of all methods is evaluated for every fold, and the
average performance across all folds is computed for analysis. This method ensures a comprehensive
and rigorous assessment of the RSP under diverse conditions.

To achieve a balanced evaluation of all methods, we adopt three performance criteria: the average
travel time over all OD pairs and all scenarios, the average of the worst-case travel time among scenarios
of all OD pairs, the average of the average value of the worst 5% of travel time among scenarios of
all OD pairs. The performance of various methods under different parameter settings is depicted
in Figure 3. The parameter values are marked next to the points. Note that all values have been
normalized using the free flow travel time of the benchmark paths (the point marked with black star)

1https://miljobarometern.stockholm.se/trafik/gangtrafik/flodeskarta-for-gangtrafik/
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Figure 3: Trade-off between average delay and worst-case delay

to minimize the impact of varying distances between different OD pairs. If we denote the travel time
of one robust path of one OD pair under one scenario as Ti, the free flow travel time of the benchmark
path of that OD pair as Tff , then the normalized value, namely Normalized Delay, of that OD pair
under that scenario is (Ti − Tff )/Tff .

Figure 3 illustrates the trade-off between the average delay and the worst-case delay, which varies
with changes in the parameters of different methods. On both axes, lower values indicate reduced
average and worst-case travel delay for a given SP method, signifying better performance. Robust paths
typically exhibit longer average delay than conventional paths because they incorporate uncertainty
into their models to ensure reliability under adverse conditions. However, they can significantly reduce
travel delay in the most challenging situations. As shown in the figure, all data points for RSP methods
are positioned below the benchmark, representing lower worst-case travel delay. The values of worst-
case delay for Ellipsoidal and SVC uncertainty are significantly lower than that of the benchmark and
the Budgeted uncertainty.

The average and worst delay for different OD pairs instead of taking average among them is further
investigated, considering that the robust methods may not always perform well for each OD pair. The
parameters providing the lowest worst-case value for each robust method in Figure 3 are chosen, i.e.,
the parameter of budgeted uncertainty is set to 2, the parameter of ellipsoidal uncertainty is set to
6, and the parameter of SVC uncertainty is set to 0.06. The results of these three robust methods as
well as the conventional SP method, used as benchmark, are represented in the form of box plots in
Figure 4. Each point refers to the worst-case travel delay of all validation scenarios for a given OD pair
using a particular SP or RSP method. There are 100 points (OD pairs) for each box plot. The upper
boundary of the box represents the 3rd percentile (75%), while the lower boundary corresponds to the
1st percentile (25%). The green line inside the box indicates the median, and the red line represents the
mean value of the data set. Here, all RSP methods show a more concentrated distribution compared
to the conventional method. The distribution of Ellipsoidal uncertainty is comparatively lower and
has a lower average worst value than the other two RSP methods.

The RSP approaches significantly improve travel times in worst-case scenarios compared to the
traditional shortest path method, with only a modest increase in average travel time of all scenarios.
Among these, the Ellipsoidal uncertainty is considered to provide robust optimal paths with the most
effective trade-off in average delay and worst-case delay. It performs well for scenarios beyond the
training set, which means superior resilience to overfitting. In addition, the data-driven SVC method,
while more complex and effective for datasets with large distribution differences across dimensions,
does not outperform other RSP methods in the sidewalk delivery problem.

The advantages of RSP, compared with the standard SP model, are examined through a sensitivity
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Figure 4: Distribution of worst-case delay of 100 OD pairs with SP and RSP methods

analysis in the context of on-demand food delivery, with respect to several sidewalk robot design
elements. The main idea is to analyze the Willingness-To-Pay (WTP) of the standard SP model and
the most efficient RSP model, which is the ellipsoidal approach in our case, according to different
robot design features, such as robot speed or size. In this context, WTP refers to the monetary value
consumers assign for delivery speed and reliability, calculated as WTP = V OT ∗T+V OR∗σ, based on
de Jong et al. (2014). Here, the VOT (Value of Time) represents the monetary values that consumers
are willing to assign on savings of waiting time at their locations. The VOR (Value of Reliability)
captures the monetary values placed on reducing delivery time variability. The variables T and σ
denote the average delivery time and the standard deviation of delivery time respectively.

Table 1: Willingness-To-Pay (WTP) and Improvement for Different Robot Design Features

Robot Design
Features

WTP for Standard SP WTP for RSP Imporvement (%)

Speed 5 km/h 20.131 19.293 4.16
Speed 7.5 km/h 12.569 12.367 1.61
Speed 10 km/h 8.988 8.972 0.18
Width 50 cm 20.457 19.529 4.54
Width 75 cm 20.753 19.747 4.85
Width 100 cm 21.121 20.048 5.08
Conservative behavior 23.170 21.615 6.71
Normal behavior 20.131 19.293 4.16
Aggressive behavior 17.647 17.596 0.29

The analysis considers varying robot design features, such as desired speed, width, and moving
behaviors—categorized as conservative, normal, and aggressive—represented through the parameters
of the Social Force Model (SFM). The WTP for both the standard SP and RSP models, as well as the
percentage improvement achieved by RSP over SP, are shown in Table 1. The results show that the
RSP models have higher economic values than the SP model in most cases across different robot design
features. Their advantages are more pronounced for slower, wider, and more conservative robots.

5 Conclusion

By addressing the variability in sidewalk travel times and incorporating robust optimization tech-
niques, this study advances the understanding of efficient and reliable last-mile delivery systems using
autonomous robots. We explore the RSP problem for sidewalk robot navigation, marking the first
study of its kind in the literature. Three RSP approaches with different uncertainty sets are employed,
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including Budgeted uncertainty, Ellipsoidal uncertainty, and a data-driven SVC-based uncertainty ap-
proach. The SVC approach, grounded in unsupervised machine learning, requires minimal assumptions
and parameter tuning, enabling an endogenous balance between conservatism and efficiency. The per-
formance of the RSP approaches is evaluated against the standard SP approach to shed light on the
trade-offs between robustness and efficiency. The results demonstrate that RSP approaches consis-
tently outperform the standard SP approach in sidewalk robot navigation. However, the kernel-based
SVC approach, while more sophisticated and effective for datasets with significant distributional dif-
ferences across dimensions, does not exhibit superior performance compared to other data-driven RSP
methods in the context of sidewalk delivery. Furthermore, systematic sensitivity analyses reveal that
the RSP models offer greater economic value compared to the SP model, with this advantage being
more significant for robots that are slower, wider, and exhibit more conservative behaviors. Further
research is required to improve the kernel-based SVC approach, focusing on enhancing its applicability
and effectiveness in RSPP by investigating optimized kernel functions and ensuring scalability for large
and complex datasets.
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