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Short summary

Trip chaining captures integrated travel patterns besides commuting trips, uncovering activity par-
ticipation. This study introduces a Point of Interest (POI)-based time-geography methodology to
approximate geographic information in trip chaining in travel surveys in a computationally-efficient
way. To demonstrate the applicability of this method, travel survey data from Eskilstuna, Sweden,
and OpenStreetMap network data are used to achieve trip chain reconstruction with reduced com-
puting time as compared to time geographic density estimation (TGDE). Reconstructed trip chain
data provide a foundation for travel behavior pattern simulation, which is central to transport
planning.
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1 Introduction

Activity-based travel behavior modeling can only explain travel choice dimensions when trip chains
are complete and correct (Tajaddini et al., 2020). Trip chaining analysis, which captures inter-
dependence of sequential trips, provides insights into real-world travel decision-making processes
(Kitamura, 1984). While travel surveys serve as a primary data source for analyzing household
movement patterns (Sun et al., 1998), they present inherent methodological limitations, particu-
larly in capturing comprehensive trip chain attributes such as mode, purpose, and spatiotemporal
characteristics (Stopher & Greaves, 2010). The absence of automated location extraction capa-
bilities, unlike GPS tracking or mobile signal data, results in significant spatial data gaps that
potentially compromise activity-based transport modeling accuracy (Marchal et al., 2011).

Accordingly, researchers have begun to examine data imputation methods for travel survey data.
For example, inspired by clinical information correction technique in healthcare field, (Xu et al.,
2002) applied hot-deck and regression imputation, which also have been applied to household
travel surveys in early work. (Roux & Armoogum, 2011) used the weight-class method, and
(Budhwani et al., 2023) applied the nearest neighbor (NN) hot-deck (k-NN) imputation approach
to travel surveys. However, these methods are constrained by their reliance on neighboring data
within the missing data category. When there a whole data category is missing, a method to
proximate missing data with other existing information is needed. Probabilistic time geography
density estimation (TGDE) leverages broader contextual information from adjacent trip sequences
for dataset completion.

Time geography, pioneered by (Hägerstrand, 1970), provides a theoretical framework for analyzing
spatio-temporal movement patterns. It enables the estimation of spatial locations for moving ob-
jects or events under space-time constraints, and it has been used across various domains, including
crime pattern analysis, disease transmission studies, and human activity pattern recognition Shaw
et al. (2008); Yu (2007); Chen et al. (2011), as well as traffic accident analysis Yamada & Thill
(2004). In transportation, the time-geographic method for missing travel location approximation
is capable to reconstruct entire mid-spot categories without direct observation Ellegård & Svedin
(2012). Building upon classic time geography, probabilistic TGDE introduces an approach that
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generates continuous probability surfaces, representing likely object trajectories (J. A. Downs,
2010). This advancement enables the visualization of spatial probability distributions through
heat map representations, offering enhanced analytical capabilities for movement pattern analysis.
TGDE has been successfully extended to network-based applications, which is particularly valu-
able for transportation studies, where movement is constrained to predefined network infrastructure
(Wood & Horner, 2018; J. A. Downs & Horner, 2012).

The network-based TGDE methodology presents a framework for interpolating missing locations in
trip chains (Wood & Horner, 2018). However, its implementation faces computational challenges,
particularly in the generation of probability surfaces, as it necessitates the calculation of presence
probabilities for each discrete network segment (J. A. Downs & Horner, 2014). This computa-
tional intensity becomes particularly pronounced when analyzing large-scale travel survey datasets
and network systems. The method’s scalability is thus constrained by available computational
resources, presenting a trade-off between analytical precision and computational efficiency.

Addressing this limitation, the current study aims to explore a method to identify missing location
data in trip chains in travel surveys based on the time geography approach (Ellegård, 1999) in
combination with open source data from OpenStreetMap. It has three specific objectives: 1.
To introduce an innovative method to approximate missing trip stops through the integration of
activity-based POI as potential locations, as a computationally practical approach to complete trip
chains in large-scale travel survey data. 2. To demonstrate combining time-space constraints with
semantic activity information to scale down the number of high potential locations by considering
both the spatiotemporal feasibility of movements and the contextual relevance of destinations and
activities. 3. To extend midpoint imputation to location sequence approximation by addressing
the spatial uncertainty in origins and destinations report in travel survey data. We discuss the
applications of this method, its strengths in trip chain reconstruction as compared to existing time
geographic methods, as well as limitations and areas for future research.

2 Methodology

We develop a POI-based time geography density estimation approach to identify the most likely
activity locations by comparison with semantic information in trip chains. The methodology
utilizes two control points (known origin and destination locations) and temporal constraints to
estimate potential activity locations (Yin et al., 2022). The network is separated into segments, and
for each segment, the probability density function reflects the likelihood of it being an intermediate
stop location. The density estimation considers the temporal deviation between the theoretical
minimum travel times (from control points to the candidate location) and the observed travel
times (to and from the actual intermediate point). This deviation is normalized by the total travel
time of the trip chain, resulting in a density measure that is inversely proportional to the temporal
discrepancy - higher density values indicate locations that better align with the observed travel
pattern (J. Downs, 2014; Wood & Horner, 2018; Horner et al., 2012).

When TGDE is applied to large networks in real cities, the scanning of the whole network for each
trip chain is computational inefficient especially considering the high computing power require-
ment for calculating network-based route length. Additionally, while the time-geographic method
ensures location approximation from a computational perspective, multiple segments/areas may
exhibit similarly high density values. To address these practical issues, our method accounts for
POI information to calculate the route length in advance to reduce the computing time. The
methodology also incorporates a systematic categorization of POIs based on their respective land
use classifications to identify the most probable stop location by considering the type of POI in
the built environment and their alignment with the purpose of trips. The constraints related to
POIs and activity types contribute to improving the spatial-semantic precision of the analysis.

The network distances between control points and POIs are computed and stored systematically.
C is the set of all control points, K is the set of all POIs, where i, j ∈ C denote control points
and k ∈ K denotes a POI. The locations of control points are reported as different areas Ca where
a ∈ A, the set of geographical areas. In each area, there could be multiple potential control points
i ∈ Ca. To extract semantic information from POI types, the whole set K of POIs is partitioned
into subsets Kb where b ∈ B represents different activity types. For example, Kservice includes all
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POIs representing facilities such as hospitals, banks, and car wash services. During the calculation
for each trip, all POIs in the subset of the reported activity of the middle point are used. The
network distances are computed using Dijkstra’s algorithm and stored in the matrix D ∈ R|C|×|K|,
where:

D =


d1,1 d1,2 · · · d1,|K|
d2,1 d2,2 · · · d2,|K|
...

...
. . .

...
d|C|,1 d|C|,2 · · · d|C|,|K|

 (1)

For any trip with origin i ∈ Co, destination j ∈ Cd, and reported activity type b ∈ B, the relevant
distances can be efficiently retrieved from D, considering only the POIs in the corresponding
activity subset Kb. After obtaining the distance matrix, and POI subsets, the density function is
formulated as a two-step optimization problem:

1. For each potential POI k in Ka, the function g(k) finds the optimal combination of origin i
and destination j that minimizes the deviation between calculated and reported travel times. In
travel surveys, locations are normally reported as areas such as municipalities, travel analysis zones
(TAZ) or postcodes, rather than specific locations. In order to calculate the travel time, the origin
and destination need to be narrowed down along a certain location within the area.

g(k) = min
i∈Co,j∈Cd

(|Di,k/v̄i − t(i,m)|+ |Dj,k/v̄j − t(m, j)|) (2)

where:
- i ∈ Co, j ∈ Cd: Sets of potential origin and destination points within reported areas
- m: the actual intermediate point that is missing
- Di,k, Dj,k: Network distance from origin i/ destination j to POI k
- v̄i, v̄j : Average travel speeds for the trip from origin i or to destination j
- t(i,m), t(m, j): Reported travel times from origin to midpoint and midpoint to destination

The calculation of the average speed is conducted with one or multiple traffic modes reported
in each trip. The fastest mode is designated as the dominant mode, while secondary modes are
assumed to account for 10% of the total travel time, with the remaining time allocated to the
dominant mode. The average speeds in equation (2) are calculated as:

vi = (1− 0.1× n)vdi + 0.1×
n∑

si=1

vsi (3)

where:
- vi : the calculated average speed of the trip starting/ending at control point i
- vdi: the speed of the dominant traffic mode of this trip
- vsi: each secondary mode in the reported modes of the trip
- n: the number of secondary modes

2. The function f̂(x) then selects the POI k that maximizes the overall density value, representing
the most likely activity location.

f̂(x) = max
k∈Ka

(
1− g(k)

tt(i, j)

)
(4)

where:
- k ∈ Ka: Set of candidate POIs within the activity category
- tt(i, j): Total reported travel time for the trip

The POI with the highest density value is selected as the most probable activity location for the
trip. The optimal combination of origin i and destination j are also selected respectively according
to g(x) when there are more than one potential control points.

3 Case Study and Data Description

The POI-based TGDE method was applied to complete a travel survey in Eskilstuna municipality,
located in Södermanland County, Sweden, with a population of approximately 107,000 (2024). In
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2021, a comprehensive travel survey, known as Resvaneundersökning (RVU), was conducted by the
Urban Development Administration of Eskilstuna Municipality in collaboration with the research
firm Origo Group. The survey targeted a random sample of 5,000 citizens aged 16 to 85, of which
2,030 individuals responded. The survey was structured into three main sections: (1) background
information of respondents, including age, gender, accommodation, household composition, and
access to various modes of transport; (2) travel habits and attitudes, with a particular focus on
changes induced by the COVID-19 pandemic; and (3) a detailed travel diary capturing the specifics
of trips undertaken.

The travel diary component documented all trips made by the respondents on the day preceding the
survey, with a maximum of six trips reported per individual. Detailed information was collected
regarding trip origin and destination, start and end times, activities, modes of transport, and
trip lengths. Origins and destinations were categorized as ’own home’, ’own workplace/school’, or
’another place’. The locations of home are recorded as 354 different ’Nyko’s (which provides a finer
geographical division within municipalities (Statistiska Centralbyrån, 2024)) and work/study place
are recorded as 10 areas. Aside from spatial information for accommodation and work places, the
locations of all reported ’another place’s are missing in the survey. The travel survey documented
11 distinct transport modes, encompassing public transport (train, bus), private vehicles (car as
driver or passenger, taxi, motorcycle), and non-motorized modes (bicycle, electric bicycle, walking,
and others). Nine activity categories were recorded in the survey: education, drop/pick up, grocery,
shopping, services, leisure, and visit family/ friends.

The dataset contained 1,482 trip chains. For our analysis, we focused on trip chains consisting
of three points (origin, middle point, and destination), where the origin and destination locations
were known but the intermediate stop location was unknown. To facilitate direct travel time
calculations based on speed, we excluded trip chains involving public transportation modes. This
filtering process results in a final sample of 546 trip chains for analysis. The spatial network analysis
utilized the OpenStreetMap transport network with nodes and edges (latest updated in February,
2024) for distance matrix generation. 661 control points were included from the travel survey,
comprising 651 residential locations and 10 workplace locations from the Eskilstuna municipality
data base. There might be multiple, one or zero residential points for each nyko number. All of
residential points dropped in the nyko area were included for the calculation of trips reporting
the certain nyko, while the centroid of the nyko area was used as the residential location when
there is no points registered in that area. All missing locations were represented by 1,849 POIs as
potential intermediate stops across the city, divided in different activity categories. Additionally,
the 661 control points were also included as potential stop locations as general accommodation
and working places for certain activities such as drop/ pick up and visiting family/ friends.

With a limited number of stops in trip chains, the distance matrix between control points and
POIs of missing locations, which is the most time-consuming part of the whole process, was pre-
computed. as a distances matrix D ∈ R|C|×|K|, where |C| = 651 represents the number of control
points and |K| = 2510 denotes the number of POIs using the Dijkstra algorithm (Schrijver, 2012).
This pre-processing approach simplified the subsequent density function calculations, as the op-
timization procedure could be efficiently conducted by filtering the respective origin set I and
destination set J with the corresponding POI set and selecting the optimized location sequence.
With computing the density function of each possible origin - midpoint - destination sequence for
each trip, the one with highest density value was chosen as the approximated locations for the trip
chain.

4 Results and discussion

The distribution of all density values of optimal estimations are shown in Figure 1, with a mean
probability of 0.749 and a median of 0.906. To show an example of how the possibilities of potential
mid-points are calculated, we choose one trip chain with work place and accommodation as the
origin (blue star) and destination (triangle), respectively. The agent stopped at the missing mid-
point for leisure activities. The estimation yielded density values as shown in Figure 2, of which
the highest density values near 1 appeared to be the approximated locations. Figure 2 also shows
that the density values of all points in the activity category of the chosen trip are computed, and
most possible locations are clustered.
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Figure 1: Distribution of Density Estimations of optimal PoIs

Computational Efficiency

This study integrated POIs as potential locations in the missing location imputation process,
offering several methodological advantages. Primarily, this approach effectively constrained the
number of known-unknown location pairs to a limited set, instead of scanning every segment
in the network, thereby optimizing computational efficiency compared to network-based TGDE
(Horner et al., 2012). The implementation of network-based distance calculations used the Dijkstra
algorithm, which constitutes the majority of computational overhead. For our case, there were
12,009 edges in the Eskilstuna network, which means 12,009 times of routing distance calculation for
each trip using network-based TGDE. However, the number of calculations could be substantially
reduced to 21% with the limited set of POIs. The pre-computation of a comprehensive origin-
destination distance matrix furthermore significantly simplified the location imputation process
by eliminating redundant calculations for individual trips. With one time calculation of the route
distances, we only needed to compare potential o-d pairs to select the optimized stop location for
each trip.

Semantic Enhancement and Spatial Filtering

Beyond computational efficiency, our method advances upon previous time-geography applications
for destination estimation through the novel integration of semantic information derived from
POIs and travel survey data (Wang et al., 2024). This semantic enhancement was implemented
through a sophisticated filtering mechanism that incorporated trip purposes prior to computing
presence probabilities based on the agents’ spatial coverage capabilities. While traditional TGDE
methods scan all network sections and typically produce high probability values (approaching 1)
for optimal estimates, they face challenges in discriminating between multiple high-value zones.
Our approach addresses this limitation through a more refined methodology that has an advantage
over conventional TGDE methods (Horner et al., 2012; J. Downs, 2014) that rely on intensity
thresholds. The implementation of targeted semantic filtering substantially reduces the potential
search space, resulting in enhanced precision in destination estimation.

Spatial Uncertainty Reduction

For origin and destination points, we introduced a novel method to minimize spatial uncertainty
by constraining locations from reported areas to specific residential locations. This approach was
particularly effective in city outskirts, where residential locations were spatially dispersed. The
method utilized travel times to specific POIs as a mechanism for more accurate approximation of
actual residential locations.
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Figure 2: Example of Mid Spot Calculation of One Trip
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5 Conclusions

This study presents a computationally efficient POI-based time-geography framework for estimat-
ing intermediate stop locations in trip chains, introducing a comprehensive method that synthesizes
both spatial constraints and activity types with travel survey data. While it utilizes POI data from
Eskilstuna municipality, the methodology’s applicability extends beyond local contexts through the
availability of global POI databases. Services such as Google Maps API could potentially provide
comprehensive POI datasets, enabling its implementation across different geographical contexts.

This study also reveals several promising avenues for future research to enhance the prediction
accuracy of intermediate stop locations. Socio-demographic characteristics, such as household
composition and individual attributes, could better constrain the set of potential intermediate
destinations. For example, the POI selection process could be refined by excluding educational
facilities (e.g., kindergartens and preschools) for households without children. Additionally, the
consideration of age and gender-specific variations in walking and cycling speeds could lead to more
precise travel time estimations for non-motorized modes, as these factors are known to substantially
influence individual mobility patterns. Another potential development is the implementation of
spatially differentiated speed limits for travel time calculations. By distinguishing between inner-
city areas, with lower speed limits and higher congestion, and city outskirts, where higher speeds are
typically permissible, the method could obtain more realistic travel time estimations and enhance
prediction accuracy.

In short, the presented methodology shows potential to achieve more complete representation
and analysis of trip chains in real-world travel behavior studies, with broad applicability through
its compatibility with widely available POI data sources. By linking trip chaining processes to
geographic information, the study contributes to enable the usage of real-life travel survey data
and the inclusion of time-space prism in trip chaining. It thereby enriches understanding of the
impact of the built environment on travel behaviors and provides material for transport modeling
and planning strategies.
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