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ABSTRACT 1 

This paper shows that the assumption of constant link speed to predict energy consumption in electric vehicle 2 
routing optimisation problem significantly underestimates energy consumption. An analytical investigation 3 
proves a dependency between energy consumption and vehicle acceleration variance, while a Monte Carlo 4 
simulation quantifies the bias from ignoring this factor, incorporating variability in speed and slope profiles 5 
through novel algorithms. A global sensitivity analysis identifies acceleration variance as the most critical input 6 
factor affecting prediction accuracy. To correct the bias, a macroscopic energy consumption model is 7 
developed which incorporates speed variance as an explanatory variable and links it to measurable 8 
macroscopic traffic characteristics, such as link density and flow. The model is validated using laboratory and 9 
experimental data, showing improved accuracy compared to the base macroscopic model. These results 10 
highlight the importance of accounting for driving and traffic dynamics in energy consumption modeling for 11 
electric vehicles. 12 

 13 
1. Introduction 14 

Accurate modelling of electric vehicles energy consumption is essential to solve an electric vehicle routing 15 
optimization problem. In such problem, the vehicle energy consumption on each network segment must be 16 
known in advance to design optimal routes, charging locations and schedules. In the field literature, energy 17 
consumption predictions are typically provided by macroscopic models which return vehicle energy 18 
consumption on each segment as a function of average inputs, such as average speed and slope on that segment 19 
(Othman et al.,2019).  20 

In particular, three macroscopic modelling approaches to simulate energy consumption have been adopted so 21 
far: 1- assumed to be proportional to the link length through a constant coefficient (e.g., Wen et al.,2016; 22 
Schiffer and Walther,2017; Bongiovanni et al.,2019; Lian et al.,2023; Su et al.,2023); 2- simulated by a 23 
macroscopic data-driven model (e.g., Yi et al.,2018; Zhang et al.,2020; Pan et al.,2023); 3- simulated via a 24 
simplified version of a microscopic power-based model (e.g., Masmoudi et al.,2018; Basso et al.,2019; 25 
Pelletier et al.,2019; Sayarshad et al.,2020;  Ma et al.,2021; Avishan et al.,2023). Generally, a microscopic 26 
power-based model gives a vehicle energy consumption function of vehicle speed profile, road slope profile, 27 
vehicle characteristics and environmental conditions, but since the actual speed profile is unknown when 28 
solving a vehicle routing problem, a constant link speed assumption is made to derive a macroscopic energy 29 
consumption model. 30 

All the proposed approaches suffer from significant limitations that may jeopardise the robustness of design 31 
service operations. While the first approach is unable to adequately describe the variability of consumption 32 
across the network, the others lack transferability to different case studies and suffer from potential bias in 33 
consumption prediction due to overly simplistic and unrealistic assumptions. In particular, the constant link 34 
speed assumption adopted in the last two approaches compromises the prediction accuracy, as it implies 35 
neglecting driving dynamics, i.e., the acceleration and deceleration phases.  36 

Therefore, to address limitations of current modelling approaches, several contributions are provided in this 37 
work: 38 

1. Mathematical quantification of the inaccuracy resulting from the constant link speed assumption.  39 
2. Generalisation of the theoretical results through a simulation experiment and identification of the 40 

model inputs that most affect the variance of the output (i.e. of the SEC error) by means of a variance-41 
based global sensitivity analysis.  42 

3. Proposal of two algorithms to generate speed and slope profiles in a way that emulates their real-world 43 
variability. 44 

4. Proposal of an augmented macroscopic energy consumption model whose aim is to eliminate the bias 45 
of macroscopic models, relative to microscopic ones.  46 

5. Validation of the augmented model against 1Hz real-world energy consumption data of a fleet of 47 
electric minivans, as collected by Fiori and Marzano (2018). 48 



2. Theoretical analysis 1 

In this section the relationship between energy consumption and the standard deviation of vehicle acceleration 2 
𝜎𝜎𝑎𝑎  is examined. Analysing this aspect is necessary to understand the impact of a constant link speed 3 
assumption on energy consumption prediction. The analysis is performed through mathematical steps, starting 4 
with a normally distributed acceleration signal {𝑎𝑎𝑡𝑡}, i.e., 𝑎𝑎𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝒩𝒩(0,𝜎𝜎𝑎𝑎2),∀𝑡𝑡 ∈ {0,1,2, … ,𝑇𝑇}, where 𝑇𝑇 =5 
Τ/Δ𝑡𝑡, Τ is the signal duration, and Δ𝑡𝑡 is a finite time step. The speed signal {𝑣𝑣𝑡𝑡} results from the integral of 6 
the acceleration signal.  7 

According to Newton’s second law of motion, the traction force applied to the vehicle wheels is composed of 8 
an inertial component, due to the applied acceleration signal, and a resistance component, due to motion 9 
resistances, customarily modelled as a quadratic function of the instantaneous speed, 𝑟𝑟𝑡𝑡 = ∑ 𝛽𝛽𝑗𝑗𝑣𝑣𝑡𝑡

𝑗𝑗2
𝑗𝑗=0 .  10 

The power signal results from the element-wise product of the traction force signal and the speed signal, while 11 
the total energy consumption results by the integral of the power signal over time.  12 

𝐸𝐸𝐶𝐶𝑇𝑇 = 𝐸𝐸𝐶𝐶𝑇𝑇𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐶𝐶𝑇𝑇𝑟𝑟 = 𝑣𝑣0𝑇𝑇𝑎𝑎Δ𝑡𝑡 + 𝑘𝑘𝑎𝑎2Δ𝑡𝑡2 + 𝑇𝑇Δ𝑡𝑡𝑣𝑣0 ∑ 𝛽𝛽𝑗𝑗 ∑ �∑ 𝑎𝑎𝑖𝑖Δ𝑡𝑡^2𝑡𝑡
𝑖𝑖=1 �𝑗𝑗+1𝑇𝑇

𝑡𝑡=1  2
𝑗𝑗=0    (1) 13 

where 𝑘𝑘 = 0.5𝑇𝑇(𝑇𝑇 + 1). After several mathematical steps and considering the expected value of the total 14 
vehicle energy consumption, the result shows that the expected value of the total energy consumption is a 15 
function of 𝜎𝜎𝑎𝑎2: 16 

E[𝐸𝐸𝐶𝐶𝑇𝑇] = E�𝐸𝐸𝐶𝐶𝑇𝑇𝑖𝑖𝑖𝑖�+ E[𝐸𝐸𝐶𝐶𝑇𝑇𝑟𝑟] = 𝑘𝑘𝜎𝜎𝑎𝑎2Δ𝑡𝑡2 + 𝑇𝑇𝑇𝑇𝑡𝑡𝑣𝑣0 ∑ 𝛽𝛽𝑗𝑗𝑣𝑣0
𝑗𝑗2

𝑗𝑗=0 + Φ(𝜎𝜎𝑎𝑎4)     (2) 17 

If speed dynamics are neglected, i.e., 𝜎𝜎𝑎𝑎 = 0, (2) becomes: 18 

E[𝐸𝐸𝐶𝐶𝑇𝑇]𝜎𝜎𝑎𝑎=0 = E�𝐸𝐸𝐶𝐶𝑇𝑇𝑖𝑖𝑖𝑖�𝜎𝜎𝑎𝑎=0 + E[𝐸𝐸𝐶𝐶𝑇𝑇𝑟𝑟]𝜎𝜎𝑎𝑎=0 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑣𝑣0 ∑ 𝛽𝛽𝑗𝑗𝑣𝑣0
𝑗𝑗2

𝑗𝑗=0       (3)  19 

In conclusion, assuming a Gaussian white noise acceleration signal, the percentage error, i.e. the consumption 20 
underestimation of assuming 𝜎𝜎𝑎𝑎 = 0, is: 21 

E[𝐸𝐸𝐶𝐶𝑇𝑇]𝜎𝜎𝑎𝑎=0−E[𝐸𝐸𝐶𝐶𝑇𝑇]
E[𝐸𝐸𝐶𝐶𝑇𝑇] = − 𝑘𝑘𝜎𝜎𝑎𝑎2Δ𝑡𝑡2+Φ(𝜎𝜎𝑎𝑎4)

𝑇𝑇𝛥𝛥𝑡𝑡𝑣𝑣0 ∑ 𝛽𝛽𝑗𝑗𝑣𝑣0
𝑗𝑗2

𝑗𝑗=0 +𝑘𝑘𝜎𝜎𝑎𝑎2Δ𝑡𝑡2+Φ(𝜎𝜎𝑎𝑎4)
       (4) 22 

which is not negligible, especially in congested traffic. For example, for a 5.5 ton electric minivan, with a 23 
payload of 2.5 ton, an average speed 𝑣𝑣0 = 10 m/s, a duration T = 100 s, an acceleration variance 𝜎𝜎𝑎𝑎2 = 2 m2/s4, 24 
road load coefficients 𝛽𝛽0 = 0.0787, 𝛽𝛽1 = 5.6∙10-4, 𝛽𝛽2 = 0.5441, the vehicle energy consumption 25 
underestimation ranges from 79% for a constant regenerative braking efficiency equal to 0.3, to 35%, for an 26 
efficiency equal to 0.9. 27 

3. Methodological framework  28 

The theoretical findings presented above have been generalised through simulation. To quantify the degree of 29 
underestimation of macroscopic model predictions, the consumption distributions by a macroscopic model and 30 
its underlying microscopic counterpart are compared under uncertain model parameters, and uncertain inputs 31 
(speed and slope profiles). 32 

The impact on the variability of model prediction errors of any uncertain inputs or parameters is quantified 33 
through a sensitivity analysis. Results are relevant to identify what inputs or parameters are most influential 34 
on the mentioned prediction error. This analysis significantly extends the study by Fiori et al. (2021), also 35 
considering uncertain speed and slope profiles.  36 

The whole study is built on the methodology depicted in Figure 1.  37 

In the methodology, non-parametric inputs and model parameters are sampled according to the Sobol’ design 38 
in a quasi-random Monte Carlo setting, from uniform independent distributions (Table 1 lists all the uncertain 39 
factors with the selected lower and upper bounds of each distribution). The speed and slope profiles are then 40 



generated through algorithms devised to generate profiles in a way which emulate their real-world variability 1 
by sampling values of 𝜇𝜇𝑣𝑣, 𝜎𝜎𝑎𝑎, 𝜇𝜇𝜃𝜃, 𝜎𝜎𝜃𝜃 and 𝐿𝐿.  2 

The speed profile generation algorithm aims to generate a speed profile with a mean 𝜇𝜇𝑣𝑣, a zero-mean first 3 
derivative (𝜇𝜇𝑎𝑎 = 0) and a given 𝜎𝜎𝑎𝑎. Applying the algorithm in a Monte Carlo framework produces a population 4 
of speed profiles that incorporates the sought variability of 𝜇𝜇𝑣𝑣 and 𝜎𝜎𝑎𝑎. The slope profile generation objective 5 
is to smooth a slope profile 𝜃𝜃�𝑥𝑥(𝑡𝑡)�, 𝑡𝑡 ∈ [0,𝑇𝑇] resulting from a Gaussian process with mean 𝜇𝜇𝜃𝜃 and standard 6 
deviation 𝜎𝜎𝜃𝜃 (being 𝑥𝑥(𝑡𝑡) the longitudinal vehicle position), without altering the slope values, thus preserving 7 
𝜇𝜇𝜃𝜃 and 𝜎𝜎𝜃𝜃. Algorithms are not provided for brevity. 8 

For each generated set of input profiles and parameter values, the microscopic power-based model by Fiori 9 
and Marzano (2018) and its macroscopic model counterpart are applied to simulate vehicle energy 10 
consumption. The result of such uncertainty propagation is a distribution of simulated energy consumption. 11 

 12 
Figure 1 – Methodological framework. 13 

To investigate the impact of the input averaging assumption of the macroscopic model on the variability of the 14 
model prediction error, a further uncertain factor is included in the experimental design, a Boolean variable 15 
whose values correspond to the model structure – microscopic or macroscopic – applied in SEC computation.  16 
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Accordingly, a total number of 1,835,008 model simulations were run to explore the impact of the uncertain 1 
factors on consumption error variability and compute the sensitivity indices (1,835,008 = 217 ⋅ (K+2), where 2 
K=12 is the total number of uncertain factors).  3 

To study the accuracy of energy consumption prediction, the difference between a simulated SEC and a 4 
laboratory SEC is used as a measure of discrepancy (see ε in Figure 1). Such laboratory consumption is 5 
computed by applying the model in Genikomsakis and Mitrentsis (2017) with calibrated parameters. 6 

A variance-based global sensitivity analysis is then applied to disentangle the impact of the two sources of 7 
input uncertainty (parameters and speed/slope profiles) on model error variability. This analysis provides also 8 
an evaluation of the impact of the input averaging assumption in macroscopic modelling. 9 

Table 1 – List of uncertain factors and corresponding lower (LB) and upper (UB) bounds of uniform 10 
distributions. 11 

Non-parametric inputs LB UB 
Mean speed,𝜇𝜇𝑣𝑣[km/h] 5.0 130.0 
Acceleration standard deviation,𝜎𝜎𝑎𝑎[m/s2] 0.0 3.50 
Mean slope,𝜇𝜇𝜃𝜃 -0.05 0.05 
Slope standard deviation,𝜎𝜎𝜃𝜃 0.00 0.05 
Vehicle load,𝑤𝑤[kg] 0 2500 
Link length,𝐿𝐿[m] 100 2000 

Model parameters LB UB 
Rolling resistance parameter,𝑓𝑓 0.005 0.020 
Frontal section area,𝐴𝐴𝑓𝑓[m2] 0.70 0.90 
Drag coefficient,𝐶𝐶𝑑𝑑 0.10 0.50 
Powertrain efficiency,𝜂𝜂 0.70 0.90 
Regenerative braking coefficient,𝛼𝛼 0.00 5.00 

 12 

Based on a Sobol’s variance decomposition (Sobol,2001), the first-order sensitivity index, 𝑆𝑆𝑖𝑖, and the total 13 
sensitivity index, 𝑆𝑆𝑇𝑇𝑖𝑖, of each input factor 𝑖𝑖, are computed. These indices describe the contribution to the 14 
unconditional error variance of a factor, both by the factor alone (first-order effect), and by the factor in 15 
interaction with all the others (total effect). 16 

3.1. Uncertainty and sensitivity analysis results 17 

The scatter plots in Figure 2 show the simulation errors of the macroscopic and microscopic models. For each 18 
simulation 𝑖𝑖, the error 𝜀𝜀𝑖𝑖 has been computed as follows: 19 

𝜀𝜀𝑖𝑖 = 𝐸𝐸𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒖𝒖𝒊𝒊,𝜷𝜷𝒊𝒊)−𝐸𝐸𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒(𝒖𝒖𝒊𝒊)
𝐿𝐿𝑒𝑒

          (5) 20 

where 𝐸𝐸𝐶𝐶𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 is the simulated total energy consumption on the link of length 𝐿𝐿𝑖𝑖 by the 21 
microscopic/macroscopic model fed with the model parameters 𝜷𝜷𝒊𝒊 and the speed/slope profiles generated by 22 
the proposed algorithms according to the non-parametric inputs 𝒖𝒖𝒊𝒊; and 𝐸𝐸𝐶𝐶𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡ℎ𝑚𝑚𝑡𝑡𝑖𝑖𝑒𝑒   is the laboratory energy 23 
consumption computed by means of the reference model fed with the same input profiles. A positive error 24 
means that the model overestimates consumption, a negative value implying an underestimation. 25 

In the scatter plots, the simulation errors are plotted against each analysis factor. Results show that the 26 
macroscopic model significantly underestimates consumption in most of the simulations, see the bottom 27 
rightmost plot. Conversely, the microscopic model has the same probability of overestimating or 28 
underestimating consumption. Given a factor, the higher the variance of light grey and yellow points over that 29 
factor, the higher the influence of that factor on the variation of the average SEC error of microscopic and 30 
macroscopic model, respectively. 31 



 1 

 2 
Figure 2 – Scatter plots of the microscopic and macroscopic models SEC errors relative to the 3 

laboratory ground-truth.  4 

Clearly, 𝜎𝜎𝑎𝑎 and the modelling assumption Hp are the two factors with the highest first-order effect on the error 5 
variance (see the variance of the blue points). The first-order impact of 𝜎𝜎𝑎𝑎 on the error variance materializes 6 
only when the macroscopic model is used and this consideration suggests that the modelling bias of the 7 
macroscopic model is an increasing function of 𝜎𝜎𝑎𝑎.Therefore, neglecting the variability of the input speed 8 
profile significantly affects model accuracy. 9 

For the microscopic model, despite 𝜎𝜎𝑎𝑎 has no impact at the first-order on the model error variance, the conical 10 
pattern of the dark grey points suggests that 𝜎𝜎𝑎𝑎 still retains some influence on the error variance, due to the 11 
interaction with other factors. In general, interaction effects are captured by the total sensitivity index 𝑆𝑆𝑇𝑇𝑖𝑖 that, 12 
for any factor 𝑖𝑖, quantifies the total contribution of that factor to the output variance (in this case, to the SEC 13 
error variance). 14 

First-order and total sensitivity indices are reported in Figure 3 for all factors. Sensitivity indices confirm that 15 
all factors but 𝜎𝜎𝑎𝑎 and Hp, have an impact on the error variance only in interaction with other factors. Therefore, 16 
𝜎𝜎𝑎𝑎 and Hp are the only factors that have a first-order impact on the SEC error variance, and when considering 17 
also the interaction effects (see the red bars) they are by far the factors that mostly influence the SEC error 18 
variance and the bias. 19 

In conclusion, as macroscopic models neglect traffic dynamics by imposing a constant speed profile, i.e., 𝜎𝜎𝑎𝑎 =20 
0, and this causes a significant bias on consumption, and much higher errors than considering 𝜎𝜎𝑎𝑎 ≠ 0, the 21 
robustness of any service based on consumption predictions by a macroscopic model is seriously questioned. 22 
The goal of the next section is to remedy this modelling deficiency. 23 



  1 
Figure 3 – First-order and total sensitivity indices of the analysis factors. 2 

4. Traffic-augmented macroscopic model  3 

A model augmentation, guided by the uncertainty and sensitivity analyses, is performed to correct the 4 
prediction bias of macroscopic energy consumption models of electric vehicles, i.e., the underestimation of 5 
consumption. As such bias is primarily caused by neglecting traffic dynamics, a model component is added to 6 
explain the ‘average’ variability of consumption due to prevailing traffic conditions. 7 

To make the macroscopic model unbiased (relative to the microscopic one), a model component 𝜀𝜀 equal to the 8 
bias is added to the model itself (Eq.(6)). To find 𝜀𝜀 expression, ∆𝑆𝑆𝐸𝐸𝐶𝐶 is plotted against the non-parametric 9 
input factors 𝒖𝒖𝒊𝒊, and 𝜎𝜎𝑣𝑣 (Figure 4). 10 

𝑆𝑆𝐸𝐸𝐶𝐶𝑚𝑚𝑎𝑎𝑒𝑒𝑟𝑟𝑚𝑚
𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝐸𝐸𝐶𝐶𝑚𝑚𝑎𝑎𝑒𝑒𝑟𝑟𝑚𝑚 + 𝜀𝜀          (6) 11 

In accordance with the theoretical findings, the scatter plots highlight that 𝜎𝜎𝑎𝑎 explains the systematic 12 
consumption underestimation of the macroscopic model. As expected, being 𝜎𝜎𝑣𝑣 directly linked to 𝜎𝜎𝑎𝑎, also this 13 
factor significantly affects ∆𝑆𝑆𝐸𝐸𝐶𝐶. The best fitting curves of ∆𝑆𝑆𝐸𝐸𝐶𝐶 for 𝜎𝜎𝑎𝑎 or 𝜎𝜎𝑣𝑣 and the two expressions for the 14 
model components are depicted in the figure, respectively, in green and blue. 15 

 16 
Figure 4 – Scatter plots of the difference between the SEC values returned by the macroscopic and 17 

microscopic models, relative to non-parametric model inputs. 18 

Non-parametric inputs Model parameters



Figure 5 depicts the distributions of ∆𝑆𝑆𝐸𝐸𝐶𝐶 returned by the base macroscopic model (orange curve), and by the 1 
two augmented models. The negative bias of the macroscopic model is corrected by both the proposed models.  2 

 3 
Figure 5 – ∆𝑺𝑺𝑺𝑺𝑺𝑺 distributions of the macroscopic model (orange), the 𝝈𝝈𝒂𝒂-based (green) and the 𝝈𝝈𝒗𝒗-4 

based (blue) augmented models. 5 

Among the proposed augmented models, the 𝜎𝜎𝑎𝑎-based formulation is the best but is hardly applicable as 6 
vehicle accelerations are not usually available. On the contrary, there exists a relationship among 𝜎𝜎𝑣𝑣 and the 7 
traffic density, 𝑘𝑘, and the flow, 𝑞𝑞, on a link (measurable macroscopic traffic characteristics). Figure 6 shows 8 
the relationship among these quantities obtained by processing the reconstructed NGSIM I-80 vehicle 9 
trajectory dataset.  10 

 11 
Figure 6 – Empirical relationship among 𝝈𝝈𝒗𝒗, 𝒌𝒌 and 𝒒𝒒, in the reconstructed NGSIM I-80 vehicle 12 

trajectory data.  13 

By considering this relationship, we obtain: 14 

𝑆𝑆𝐸𝐸𝐶𝐶𝑚𝑚𝑎𝑎𝑒𝑒𝑟𝑟𝑚𝑚 
𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘,𝑞𝑞) = 𝑆𝑆𝐸𝐸𝐶𝐶𝑚𝑚𝑎𝑎𝑒𝑒𝑟𝑟𝑚𝑚 + 𝜀𝜀(𝑘𝑘, 𝑞𝑞) = 𝑆𝑆𝐸𝐸𝐶𝐶𝑚𝑚𝑎𝑎𝑒𝑒𝑟𝑟𝑚𝑚 + 𝛽𝛽𝜎𝜎𝑣𝑣,1

1+𝛽𝛽𝜎𝜎𝑣𝑣,2 (𝛾𝛾1𝑘𝑘−𝛾𝛾2𝑞𝑞0.5)⁄      (7) 15 

Eq.(7) depicts the energy consumption of an electric vehicle in response to prevailing traffic conditions, and 16 
this augmented version of macroscopic energy consumption model is implementable in real-world because it 17 
only depends on measurable macroscopic traffic characteristics. 18 



The augmented model is validated using data from Fiori and Marzano (2018). Each trajectory was segmented 1 
in elements of different lengths and the results, depicted in Figure 7, show that the accuracy of the augmented 2 
macroscopic model is very close to that of the microscopic model, regardless of link length.  3 

 4 
Figure 7 – SEC error distributions relative to the experimental data. 5 

5. Conclusion 6 

Macroscopic energy consumption models are crucial for solving electric vehicle routing optimization problem, 7 
but they face limitations that affect prediction accuracy. A theoretical analysis demonstrated that the common 8 
assumption of constant link speed significantly underestimates energy consumption, due to the dependency of 9 
vehicle energy consumption on acceleration variance, which increases with traffic congestion. 10 

These theoretical results are validated through simulations that quantify the impact of input uncertainties (i.e., 11 
speed and slope profiles) on prediction accuracy. To this aim, two algorithms are devised to generate speed 12 
and slope profiles in order to emulate their real-world variability. Variance-based sensitivity analysis revealed 13 
that the variability of speed profiles - namely 𝜎𝜎𝑣𝑣 and 𝜎𝜎𝑎𝑎 – is mainly responsible for consumption variability. 14 
Ignoring traffic dynamics results in biased predictions. 15 

To increase the macroscopic models accuracy, a regression component (based on 𝜎𝜎𝑣𝑣 or 𝜎𝜎𝑎𝑎) that corrects the 16 
underestimation by incorporating the effects of traffic dynamics is added to the model. Furthermore, the link 17 
between standard deviation of vehicle speed and the density and flow of a link resulted in the additional term 18 
being expressed as a function of only measurable macroscopic traffic characteristics, making the model easily 19 



implementable in real-world applications. Validation with actual data showed that the augmented macroscopic 1 
model accuracy is always close to that of microscopic model, regardless of link length. 2 
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