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Short summary

Modelling human activity scheduling is a challenging task at the core of activity-based modelling.
Existing approaches to activity scheduling are increasingly expensive and slow to develop, and
can also produce unrealistically homogenous outputs, failing to model the real diversity in human
behaviours. We contribute a novel methodology combining a deep generative model with condi-
tionality, such that the model can be used in an activity modelling or transport simulation based
framework. By explicitly and simultaneously modelling variation of observed activity schedules,
we better represent real diversity. Our experimental results demonstrate that our approach is both
cheaper and faster than existing activity scheduling solutions, whilst still providing closely tailored
and high quality outputs.
Keywords: Activity Based Modelling, Choice Modelling, Deep Generative Machine Learning

1 Introduction

We propose a novel approach to modelling activity schedules that combines the qualities of both
generative and conditional approaches. We define an activity schedule as a 24-hr long sequence
of activities belonging to an individual, with associated start times and durations. We do not
consider locations, trips or travel mode choices at this stage.
Activity scheduling is at the core of the motivation for Activity-Based Models (ABMs), driving
the consideration of choice interactions across time (Rasouli & Timmermans, 2014). Activity
scheduling is also a requirement for simulation-based transport approaches such as Matsim (2024).
Activity scheduling can be decomposed into (i) participations - if an individual chooses to undertake
an activity, and (ii) timing - when and for how long to undertake the chosen activities. The
participation and timing of multiple activities for an individual creates a high-dimensional object
with complex joint distributions.
We consider schedules as having labels, such as socio-economic attributes of the scheduler. These
labels influence the activity scheduling process. In some cases this influence is expected to be strong,
for example a person not in employment will likely not include a work activity participation. But
in other cases the influence of a label may be weak, for example an employed person will probably
include a work activity, but they might not, perhaps due to sickness or holiday.
The prevailing approach (summarised in Table 1) in applied models is to decompose the scheduling
process into series of discrete choices, applied sequentially. To ensure temporal consistency, choices
are then combined with rule based scheduling algorithms. We highlight three main critiques of
this approach:

1. Sequential choices presume some order of decision making that may be unrealistic.

2. The combination of discrete choices and rules is simplified such that it cannot reproduce the
real diversity of observed activity schedules.

3. The complex combination of multiple interacting sub-models and rules is slow and expensive
to develop, calibrate and use.

Jointly or simultaneously modelling different discrete choices can allow for more realistic modelling
of joint distributions. Pougala et al. (2023) combine activity scheduling (with mode and location
choice) into a simultaneous model. Their approach is consistent with existing behavioural theory,
but both estimation of the parameters and simulation of schedules are computationally expensive,
limiting scalability. Manser et al. (2021) manage to scale the approach to application as part of a

1



Table 1: Summary of Existing Applied Activity Scheduling Frameworks

Model/Framework Activity Participation Activity Timing
TASHA (Miller & Roorda, 2003) Rules-based Rules-based
ALBATROSS (Arentze & Timmermans, 2004) Rules-based Rules-based
FAMOS (Pendyala et al., 2005) Nested-logit models Hazard models
CEMPDAP (Sener et al., 2006) Nested-logit models Hazard models
ADAPTS (Auld & Mohammadian, 2009) Rules-based Rules-based
DaySim (Bradley et al., 2010) Multinomial-logit models Multinomial-logit models
SDS (Khan & Habib, 2023) Markov Chain Monte Carlo Rules-based

activity-based demand model, but limit the scope of the simultaneous approach to activity timings
only.
Deep generative models have been applied for population synthesis. Borysov et al. (2019) apply a
Variational Auto-Encoder (VAE) architecture for population synthesis. They find their approach
able to outperform conventional methodologies in high dimensional cases. Kim & Bansal (2023)
add to this work, also testing a Generative Adversarial Network. They formalise a feasibility-
diversity trade-off. Where high feasibility is the avoidance of infeasible samples and high diversity
improves the generation of missing data.
Koushik et al. (2023) use a discriminative model to generate activity schedules for given agent at-
tributes using recurrent neural networks (RNNs). They discretise 24-hr schedules into five minute
steps and consider nine different types of activity. This results in 9288 possible schedules, a signif-
icantly larger problem space than for population synthesis. Evaluation is primarily made through
the consideration of conditioned marginal distributions, for example start times by type of activ-
ity. They find aggregate realism challenging, particularly the correct representation of infrequently
observed activities.
Shone & Hillel (2024) have demonstrated a purely generative approach to activity schedule mod-
elling using deep generative machine learning. This work uses schedule specific versions of the VAE
architecture by Kingma & Welling (2013) to approximate the real distribution of schedules. This
distribution is then used to generate new schedules, allowing application for data anonymisation
and realistic up-sampling of samples.
A purely generative approach does not allow for conditional generation, where conditionality is
typically used to provide some realistic distribution of schedules and labels, such an agents socio-
economic attributes. Conditionality is required to model the response of activity scheduling to new
scenarios, such as new household locations, increased working from home, or reduced car ownership.
Conditionality is also often required for down-stream models, such as for activity location or mode
choices. Increasingly, consideration of equity of outcomes across different groups of people is also
desired, in which case maintaining the distribution of different scheduling choices across different
agent attributes is required.

1. We present an approach using deep generation with a novel joint generative architecture and
sampling that is able to combine the advantages of generative modelling within a standard
discriminative framework.

2. We show using a comprehensive evaluation framework that our model generates diverse and
realistic distributions of activity schedules, while maintaining key distributions with agent
labels.

3. We compare our approach to a purely discriminative model and a purely generative model.

We identify three primary benefits of our approach for application; (i) simplicity and speed, (ii)
realistic diversity of outputs, and (iii) the potential for more realistic interaction of choice compo-
nents. We make all experiments reproducible by publishing the open source software Caveat1.

1https://github.com/big-ucl/caveat
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Table 2: Summary of sample density estimation and sample quality evaluation

Distribution Segmentation Descriptive metric Distance metric
Density Estimation

Aggregate
Participation by time bin activity av .probability EMD
Activity Participation
Sequence length - av. length EMD
Single participation rate enum. activity av. rate EMD
Pair participation rate activity pairs av. rate EMD
Activity Transitions
Bi-gram transition rate activity pairs av. rate EMD
Tri-gram transition rate activity triples av. rate EMD
Activity Timing
Start times enum. activity av. time (days) EMD
End times enum. activity av. time (days) EMD
Durations enum. activity av. time (days) EMD
Start-duration (joint) activity av. time (days) EMD

Sample Quality
Starts at home - probability EMD
Ends at home - probability EMD
Sequence duration - av. time (days) EMD

2 Methodology

Formal Problem Definition

We denote the observed set of individuals, which we call the real sample, as I = {1, 2, ..., Ni}. Each
individual i ∈ I is associated with an activity schedule xi and also a set of labels yi. We define an
activity schedule xi as an ordered sequence of activity types ain with associated durations din:

xi = [(ai1, di1), (ai2, di2), ..., (aiN , diN )] (1)

Where n indexes the position in the schedule. The number of activities in each schedule; N may
vary, but the total duration should equal the time period T , such that:

n=N∑
n=1

din = T. (2)

In this work we use a time period T of 24 hours starting and ending at midnight. We aim to
estimate the distribution of schedules conditional on labels; P (X|Y), such that new schedules can
be generated by drawing from this distribution.

Evaluation

We refer to schedules generated by a model as a synthetic sample; X̂. In this section we consider
the evaluation of the synthetic samples of activity schedules. Where size of the synthetic and real
sample are the same, and have the same labels Y.
We use the existing framework by Shone & Hillel (2024) to evaluate synthetic samples. This
framework is composed of (i) density estimation, (ii) sample quality, and (iii) creativity. Density
estimation is further broken down into; aggregate, participations, transitions and timing. Density
estimation and sample quality evaluation metrics are summarised in Table 2.
Creativity is the evaluation of diversity and novelty of synthetic samples. We define homogeneity
and conservatism as the opposite of diversity and novelty, for use as distance metrics as described
in Table 3.
For conditional density estimation we extend on this framework to consider the joint density
estimation of schedules and labels. We do this by partitioning the synthetic samples into sub-
populations based on label categories. Density estimation is then evaluated for each sub-population
separately and then combined using averaging, weighted by sub-population size.

3



Table 3: Creativity evaluation summary

Feature Description Descriptive metric Distance metric

Diversity
The probability of a sequence
within the synthetic sample
being unique.

probability -

Homogeneity
The probability of a sequence
within the synthetic sample
not being unique.

- probability

Novelty
The probability of a sequence
not occurring in the observed
sample.

probability -

Conservatism
The probability of a sequence
occurring in the observed
sample.

- probability

Table 4: NTS Label Summary

Label Categories
Gender {male, female, unknown}
Age {0-4, 5-10, 11-15, 16-19, 20-29, 30-3,9 40-49, 50-69, 70+}
Car Access {yes, no, unknown}
Work Status {employed, education, unemployed}
Income (household) {highest, high, medium, low, lowest}

Data

For the real sample we extract 37306 schedules from the 2022 UK National Travel Survey (NTS)
trip table. We convert this trip data into 24hr-activity schedules using PAM Shone et al. (2024).
We simplify the real schedules by removing trips (we maintain the original trip end times) and
mapping the activity types to the set {home, work, education, medical, escort, other, visit, shop}.
Activity start times, end times, and durations, have a level of precision of one minute.
Corresponding labels for the real sample are extracted from NTS household and individual data
tables. We extract the following labels; {gender, age, car access, work status, and household
income}. The choice of labels are designed to reflect likely requirements of a transport demand
modelling framework. Label categories are summarised in Table 4.

Experiment Design

We test a novel conditional generative architecture, which we call JVAE. We compare this to a
baseline (i) discriminative (non-generative) model by Koushik et al. (2023), and (ii) generative
model by Shone & Hillel (2024). Models design and capability is over-viewed in Table 5.
Our experiments are intended to demonstrate the suitability of the JVAE approach for application
in ABM or simulation frameworks, and to allow comparison with (i) a classic non-generative
discriminative approach, and (ii) a purely generative approach.

Baseline Discriminative Model

We use a model based on Koushik et al. (2023) as a baseline discriminative model. This model
uses a discrete schedule encoding and a Recurrent Neural Network architecture (RNN), hence we

Table 5: Experiments Overview

Model Name Generative Conditional Schedule
Encoding

Discrete RNN (Baseline) no yes discrete
Continuous RNN VAE yes no continuous
Continuous RNN JVAE yes yes continuous
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refer to this model as the Dicrete RNN. The model effectively learns the most likely schedule
for each observed combination of label categories. This means that there is no variety between
schedules with the same labels. Hence, we consider this as a non-generative approach.

Baseline Generative Model

We use a generative model by Shone & Hillel (2024) as a baseline generative model. This model is a
Variational Auto-Encoder (VAE) and uses a continuous schedule encoding and RNN architecture,
hence we refer to this model as the Continuous RNN VAE or just VAE. The VAE architecture
learns a mapping between a known latent distribution and an approximation of the real sample of
activity schedules. After training, the model can be used to generate new schedules by sampling
from the latent distribution and mapping this to new samples of schedules.

Joint Variational Auto Encoder

In order to provide a generative model with conditional capability we train a VAE to jointly
generate paired schedules and labels. The generated schedules can then be sampled based on their
associated generated labels to find the conditional probability as per Bayes:

P (X|Y ) =
P (X,Y )

P (Y )
(3)

By repeatedly generating and sampling from this joint distribution we are able to match a target
distribution of labels as required for modelling.
The joint model uses the same continuous schedule encoding and schedule encoder and decoder
architectures as the Continuous RNN VAE for generating schedules. It adds a labels encoder and
decoder block. Labels and schedule encoder block output vectors are combined by addition before
passing into the latent layer. This architecture is summarised in Figure 1. We refer to this model
as the Continuous RNN JointVAE or JVAE.
The schedule encoder block uses a learnt embedding layer for activity types, these are then con-
catenated back onto activity durations before being passed into the RNN block as inputs. The
RNN block uses 5 layers of LSTM units of size 256. Lastly the final RNN hidden states are passed
into a feed forward layer (Linear layer with LeakyRELU activation) also of size 256.
The schedule decoder block essentially mirrors the encoder. The latent input is passed through
a feed-forwards layer and then the hidden state of the RNN block. Each RNN unit is passed the
output of the previous unit as input. RNN outputs are divided into activity type weights which
use a soft-max activation and duration weights which uses a sigmoid activation. Activity type
inference uses arg-max sampling.
The labels encoder block first individually encodes each categorical label using learnt embedding
layers. The resulting embedding vectors are combined through addition then passed through a
single feed-forward block. The output from the labels encoder is added to the schedule encoder
block by addition.
The labels decoder block first passes the latent vector into a single shared feed-forward block. The
output is then shared between individual feed-forward blocks and soft-max layers for each of the
labels. All label embeddings and layers are of size 32, except for the final feed-forward blocks and
soft-max layers which are sized as required for the label categorical sizes. Label inference uses
arg-max sampling.
The inclusion of labels generation requires the addition of a labels reconstruction loss. We use
mean weighted cross-entropy loss, where the weighting is the inverse of label category frequency.
During training label weights are normalised by batch such that the total weight is equal to the
batch size. This additional label reconstruction loss is weighted by λ.

Loss = CrossEntropyactivities +MSEdurations + λCrossEntropylabels + βKLD

JVAE Sampling Approach

Synthetic schedules and labels are sampled without replacement to match a target distribution of
labels. For this paper we use the real sample of labels as the target, as this is likely the closest
requirement in practice. We find that generating a synthetic sample 28 times the target population
size is sufficient to match 99.99% of target label combinations. This approach is feasible because
the generation process takes negligible time. This massive over-generation of synthetic schedules
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Figure 1: JVAE Architecture
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Table 6: Training Overview

Model Name Learning
Rate

Batch
Size

Latent
Size

RNN
Depth

Layer
Size β λ

Discrete RNN (Baseline) 0.001 1024 - 2 128 - -
Continuous RNN VAE 0.001 1024 6 5 256 0.01 -
Continuous RNN Joint VAE 0.001 1024 6 5 256 0.01 0.0001

Table 7: Evaluation Summary

Disc. RNN Cont. RNN VAE Cont. RNN JVAE
dist* var. dist* var. dist* var

Density Estimation
Aggregate 0.032 0.000 0.017 0.000 0.020 0.000
Participations 0.688 0.000 0.067 0.000 0.073 0.000
Transitions 0.035 0.000 0.007 0.000 0.007 0.000
Timing 0.255 0.000 0.068 0.000 0.072 0.000
Joint Density Estimation
Aggregate 0.038 0.000 0.022 0.000 0.023 0.000
Participations 0.594 0.000 0.084 0.000 0.070 0.000
Transitions 0.049 0.000 0.016 0.000 0.011 0.000
Timing 0.261 0.000 0.075 0.000 0.076 0.000

Sample Quality 0.000 0.000 0.053 0.000 0.050 0.001

Creativity 0.619 0.000 0.003 0.000 0.002 0.000
∗ mean aggregated distances from 5 model runs

is required to ensure the target distribution of labels can be met without duplicating samples and
with minimal missing samples.

Models Training and Hyper-parameters

Models are trained on 80% of the real sample data. We use the remaining 20% for validation
during training. We train models until validation loss stabilises, typically for around 100 epochs
We use Adam for gradient descent. Model hyper-parameters are reported in Table 6. Code and
documentation for these models is available in Caveat2.

3 Results and discussion

Table 7 presents summary evaluation metrics for density estimation, conditional density estimation,
sample quality and creativity. Lower distances are better. The models have stochastics resulting
from the training process and from sampling the latent space. We therefore present all evaluation
metrics as means from five model runs with varying seeds.

Impact of a Generative Approach

The generative approaches by the VAE and JVAE models significantly improve evaluation of
density estimations and creativity. Figures 2, 3, and 4 illustrate the quality of density estimation
for activity aggregate frequency, participations and transitions, and times respectively. The VAE
and JVAE are both almost perfectly creative, while the Discrete RNN is limited to variation only
within the input labels. The non-generative Discrete RNN has perfect sample quality, partly due
to it’s discrete encoding ensuring correct total durations.
The difference between regular and joint density estimation for each model are minimal and the
performance of the generative models clearly superior. This is because of the massive variance
or diversity of real schedules. Individuals with similar or the same labels can have very different
schedules. From the models point of view, the non-conditional or random variance of schedules
dominates the conditional variance from the labels. Alternately we can say that schedules are

2https://github.com/big-ucl/caveat
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Figure 2: Aggregate Frequencies

Figure 3: Activity Sequences

Figure 4: Activity Start Times and Durations
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Figure 5: Work Activity Participation Rates by Household Income

only ’weakly’ conditional on the labels. Adding a generative capability explicitly allows for the full
variance to be modelled.

Impact of Conditional Generation

The Continuous RNN VAE has no conditional capability but still outperforms the Discrete RNN
(which can be considered as ’purely’ conditional) at joint density estimation. This is due to the
poor performance of the Discrete RNN at regular density estimation. Our evaluation does not
separate regular density estimation from the evaluation of joint density estimation.
The JVAE architecture adds a conditional capability to the VAE generative capability, this im-
proves conditional density estimation compared to the regular VAE. However, because of the
dominance of non-conditional variance, the difference between non-conditional and joint evalua-
tions for all models is small. Similarly, the influence of adding conditionality to the generative
approach, on both sample quality and creativity is minor. To get a more useful evaluation of
conditional capability we therefore consider two example joint distributions in more detail; (ii)
work participation conditional on income, and (ii) schedule sequences conditional on employment
status.
Figure 5 shows the relationships between work activity participations and household incomes for the
target NTS and synthetic samples. The target distribution shows increasing participation in work
with increased income, with a drop at the highest level. The VAE has no conditional capacity and
therefore does not synthesise this pattern. The JVAE is closest to the target distribution, clearly
capturing the trend and similar levels of participation.
We expect employment status labels to have a strong influence on schedules. For example we
expect people in education to have more education activities. Figure 6 shows the target NTS
schedule sequences split by the employed, student, and unemployed sub-populations. Figure 7 show
sequences for the JVAE model. We can see sensible and realistic changes in sequences within each
sub-population, similar to the target NTS. For comparison the Discrete RNN synthetic sequences
are shown in Figure 8. Sequences are clearly conditional on employment status, but they are
dissimilar to the target NTS and have minimal diversity. The continuous RNN VAE is not shown
- it has no conditional capability so produces similar sequences within each sub-population.

4 Conclusions

We show that a deep generative approach to modelling activity schedules significantly improves
on an existing discriminative modelling approach. Our generative approach allows the rapid gen-
eration of diverse and high quality schedules. This is likely because of the high diversity of real
activity schedules, making them unsuited for discriminative approaches. We demonstrate results
suitable for synthetic schedule generation, for building predictive models, and for up-sampling or
anonymising existing data. Our approach allows for rapid model development, training, evaluation
and application.
We demonstrate that our novel JVAE approach provides conditional density estimation, via both
(i) a quantitative evaluation framework, and (ii) the consideration of example joint distributions.
Our results show that the JVAE suitable for application in activity-based modelling frameworks
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Figure 6: Target NTS Schedules Sequences by Employment Status

Figure 7: JVAE Synthetic Sequences by Employment Status

Figure 8: Discrete RNN Synthetic Sequences by Employment Status
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and simulations.
Incorporating a deep generative approach takes some control away from the modeller. However,
it greatly improves the capacity of the model to learn complex distributions. A key finding is the
dominance of non-conditional ("random") variation in observed schedules. The deep generative
approach allows explicit modelling of this variance in a single model, better capturing variation
and generating realistic model outputs.
Our approach is very fast - models can be rapidly developed, trained in minutes, and massive
populations generated in seconds. We share the developed models and provide a framework for
extensive model and hyper-parameter exploration using Caveat3.
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