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Short summary

This paper introduces an enhanced framework for Origin-Destination Matrices Estimation (ODME)
using the Flex-GLS model, which integrates state-specific flexibility parameters to account for vary-
ing congestion levels. Building on prior research, the study leverages Floating Car Data (FCD)
and Google Popular Times (GPT) to classify travel demand into macro-activities characterized by
spatio-temporal flexibility metrics, which are further utilized to enhance the ODME process. The
extended model incorporates network state types, predicted using Gaussian Processes, to dynam-
ically adjust flexibility parameters according to prevailing traffic conditions. This methodology
is validated through a case study in the EUR district of Rome, utilizing extensive FCD datasets
spanning 2020 and 2023. Results demonstrate that Flex-GLS outperforms traditional GLS, offering
more accurate demand estimation and link flow reproduction. Moreover, the study highlights the
critical relationship between congestion levels and flexibility parameters, emphasizing the model’s
adaptability to real-world urban mobility challenges.
Keywords: Congestion Sensitivity, Crowd-sourced data, Dynamic OD Matrices Estimation, Float-
ing Car Data, Spatio-temporal Flexibility.

1 Introduction

The evolving dynamics of urband mobility demand ongoing advancements in Origin-Destination
Matrices Estimation (ODME) models. While traditional tools, such as loop detectors for monitor-
ing traffic flows, are necessary, they often fall short in capturing the intricacies of travel demand
(Carrese et al., 2017). Conversely, crowd-sourced data, such as mobile phone and social media data
as well as GPS traces provide high-resolution insights into human mobility. Therefore, integrating
these data sources into ODME models can significantly improve the understanding of trip purposes
and activities and offer a better overview of urban travel behavior (Timokhin et al., 2020).

We define travel flexibility as the extent to which individuals can adjust the timing and locations of
their activities. In previous research (Castiglione et al., 2024), we demonstrated how flexibility is
directly influenced by activity types and trip purposes by leveraging Floating Car Data (FCD) and
Google Popular Times (GPT). The FCD derived flexibility metrics revealed substantial variability
across activity types and time frames. In particular, six demand components, characterized by
distinct temporal and spatial flexibility levels, were systematically profiled to obtain aggregated
OD matrices FCD observations.

The demand components and their associated flexibility metrics have been integrated into the
Flex-Generalized Least Squares (Flex-GLS) model (Castiglione et al., 2024), an enhancement of
the Generalized Least Squares (GLS) framework (Cascetta et al., 1993). This extension enables
the utilization of spatio-temporal flexibility insights from crowd-sourced data during the estimation
process. Notably, the Flex-GLS introduces constraints to the traditional GLS, thereby mitigating
the underdetermined nature of ODME. Benchmarking studies further emphasize its effectiveness in
improving ODME accuracy, delivering a more refined and detailed representation of urban mobility
patterns.
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The performance of the Flex-GLS model has been found to vary depending on the state of the
network, particularly under differing levels of congestion. This highlights the need to investigate
how spatio-temporal flexibility parameters are influenced by congestion to enhance the model’s
responsiveness. The extent to which demand components react to congestion, in fact, depends
on the trip purpose and their inherent flexibility. For instance, trips with rigid purposes, such as
commuting to work or school, are relatively unaffected, while more flexible activities, like shopping
or leisure, may adapt to congestion through changes in timing or destination.

This study examines how demand components behave under various congestion scenarios, seeking
to answer key questions: Which trips are most likely to be canceled during severe congestion?
Which trips exhibit adjustments, such as destination changes? Which remain largely consistent?
By leveraging detailed FCD data, the Flex-GLS framework is refined to include congestion-aware
flexibility parameters. This enhancement provides a more dynamic and versatile model, capable
of representing urban travel demand under a wide range of traffic conditions.

This paper presents two main contributions:

1. State-Specific Flexibility Parameters: Expanding upon the Floating Car Data (FCD)
classification methodology outlined in Castiglione et al. (2024), this study identifies recurring
traffic network "state-types". For each state-type, unique congestion-level-specific flexibility
parameters and constraints are designed for each demand component, significantly enhancing
the Flex-GLS model’s responsiveness to varying traffic conditions;

2. Congestion-Responsive Flex-GLS: Gaussian Processes (GPs) are employed to link state-
specific flexibility parameters to real-time network congestion levels. This integration allows
the Flex-GLS model to predict the prevailing network state-type and dynamically adjust
its flexibility parameters accordingly, ensuring a more accurate alignment with real-world
traffic scenarios.

The proposed methodology is demonstrated through a case study of the EUR district in Rome,
Italy. Utilizing an FCD dataset of over 1.5 million trips recorded between September and Decem-
ber 2020, the study is further complemented by an additional dataset from the same area collected
in 2023. This supplementary data facilitates a comprehensive examination of traffic states across
different years and conditions. The remainder of the paper is structured as follows: the Method-
ology section elaborates on the congestion-aware Flex-GLS model, with a focus on its theoretical
underpinnings and the interplay between Temporal and Spatial Flexibility. The Results section
evaluates the proposed model’s efficacy compared to the traditional GLS under varying congestion
scenarios. Finally, the Conclusions section highlights the key findings and proposes venues for
future research.

2 Methodology

Given nt×nC sample OD matrices, each cell represents trips from origin O to destination D within
a specific time interval t, associated with a distinct travel demand component C. These demand
components, referred to as macro-activities, group together activities that share similar levels of
spatio-temporal flexibility parameters, derived from crowd-sourced data as detailed in (Castiglione
et al., 2024). We define Temporal Flexibility (TF) as an individual’s capacity to adjust the timing of
their activities, and Spatial Flexibility (SF) as the ability to vary activity locations. Each demand
component is characterized by a distribution of TF and SF values. In the extended Flex-GLS
framework, the spatio-temporal flexibility distribution σC,S∗ is uniquely defined for each demand
component C and prevailing network state type S∗, capturing the influence of congestion on travel
behavior.

During the Initialization phase, traffic metrics such as observed counts and speeds are used to
predict the most likely network state type S∗. A pre-trained Gaussian Process (GP) model is
employed to estimate the posterior probability of each state type P (S|X), where X represents the
observed traffic data and each state type S corresponds to a specific congestion condition. The
most probable state type S∗ is identified as:

S∗ = argmax
S

P (S|X) (1)

Once the most probable state type S∗ is determined, the associated spatio-temporal flexibility
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parameters σC,S∗ are assigned to each demand component C. This dynamic adjustment ensures
that the model aligns with the real state of traffic conditions.

The traditional Generalized Least Squares (GLS) formulation (Cascetta et al., 1993) can be easily
extended to multiple demand components C, each characterized by a spatio-temporal flexibility
distribution σC,S∗ . The modified objective function is defined as:

d∗ = argmin
d∗

(∑
t

(∑
l

wl · (vl,t(d∗)− v̂l,t)
2 +

∑
od

∑
C

wC(S
∗) · (d∗C,t,od − d̂C,t,od)

2

))
(2)

where:

• vl,t(d
∗): Simulated traffic flows from estimated demand d∗ at time t;

• v̂l,t: Observed traffic counts at time t;

• d∗C,t,od: Estimated demand for origin-destination pair od, demand component C, and time t;

• d̂C,t,od: Seed OD matrix for each demand component C at time t, derived from FCD;

• wl: Weight for flow discrepancies;

• wC(S
∗): Weight for demand component C under state type S∗.

Initialization

State S∗ Prediction

Demand Assignment

Gradient Descent

Demand Components Adjustment
(Maximum Likelihood Estimation)

O.F. Evaluation

Convergence?

End

yes

no

Figure 1: Workflow of the Flex-GLS Model with State-Specific Flexibility Parameters

Incorporating multiple demand components into the GLS framework significantly increases the
complexity of the already intricate ODME process by adding a substantial number of variables.
To address this issue, the Flex-GLS framework leverages the principle that total demand (d∗od) can
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be expressed as the sum of its individual components (d∗od,C). Then, by employing conditional
probabilities, the model condenses these components into a single variable, effectively reducing
dimensionality and maintaining computational efficiency. The process begins with the estimation
of total demand for each origin-destination (od) pair and time interval (t), followed by refinement
steps that adjust component-specific demands based on temporal and spatial flexibility metrics.

Demand components are defined as:{
dC,t,od = pC(t, S

∗) · dt,od
pC(t, S

∗) =
dC,t∑
t dC,t

(3)

where:

• dC,t,od: Demand for component C at time t for od under state S∗,

• pC(t, S
∗): Proportion of total demand at time t for component C under state S∗,

• dt,od: Total demand at time t for od,

• dC,t: Aggregate demand for component C at time t.

This formulation incorporates the influence of the selected network state S∗, ensuring the disaggre-
gation of total demand reflects prevailing congestion conditions. The objective function is adjusted
accordingly:

d∗ = argmin
d∗

(∑
t

(∑
l

wl · (vl,t(d∗)− v̂l,t)
2 +

∑
od

∑
C

wC(S
∗) · (p∗C(t, S∗) · d∗t,od − d̂C,t,od)

2

))
(4)

where:

• vl,t(d
∗): Simulated traffic flows from estimated demand d∗;

• v̂l,t: Observed traffic counts;

• d∗t,od: Estimated total demand for od at time t;

• d̂C,t,od: Seed OD matrix for component C, adjusted for state S∗;

• wl: Weight for flow discrepancies;

• wC(S
∗): Weight for components under S∗, inversely proportional to σC,S∗ .

The weights wC(S
∗) are defined as the inverse of the variance of each demand component under

the selected state S∗ (wC(S
∗) = 1

σC,S∗ ). This approach assigns greater emphasis to more rigid
components, which exhibit smaller variances, within the objective function. Consequently, the
model discourages substantial fluctuations in these less flexible components, promoting stability
and reliability in the estimation process.

After the estimation phase, the model enters the Demand Components Adjustment phase, where
p∗C(t, S

∗) is recalibrated for each demand component using flexibility metrics tailored to the identi-
fied state S∗. This adjustment step ensures consistency between the newly estimated demand and
the predefined flexibility parameters. If the objective function demonstrates satisfactory conver-
gence, the process terminates; otherwise, the model iteratively returns to the Assignment phase,
as illustrated in the workflow diagram in Figure 1.

During each iteration of the Gradient Descent step, the Flex-GLS framework refines individual
demand components by solving a constrained Maximum Likelihood Estimation (MLE) problem.
This step utilizes prior probabilities PC(t, S

∗) and corresponding distributions σC,S∗ , derived from
seed FCD data, ensuring alignment with the total estimated demand d∗. The model evaluates its
overall estimation accuracy through the total likelihood Ltotal, calculated as the logarithm of the
likelihoods of the individual components.

The MLE constraints are designed to ensure data consistency, treating Temporal and Spatial Flex-
ibility as complementary dimensions influenced by the prevailing network state S∗. Temporal
constraints allow for proportional adjustments of demand components within a time interval t,
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while ensuring overall consistency across a temporal window T (S∗). This distinction is partic-
ularly important for accurately representing travel behavior, such as narrower time windows for
commuters versus broader windows for more flexible activities like shopping. Similarly, Spatial
Flexibility allows for redistributing demand from a single origin O across multiple destinations
within the same time interval, ensuring proportionality under the state S∗.

The spatio-temporal MLE problem constraints are thus formalized as:{∑
C PC(t, S

∗) = 1 ∀t ∈ T (S∗),∀od∑
t∈T (S∗)

∑
d dC,t,od∑

t∈T (S∗)

∑
d dt,od

≈
∑

t∈T (S∗)

∑
d d∗

C,t,od∑
t∈T (S∗)

∑
d d∗

t,od
∀C, ∀t ∈ T (S∗),∀od

(5)

These constraints enable the model to effectively capture spatio-temporal dynamics while ensuring
consistency in the proportions of demand components over time and space, tailored to the specific
time windows defined by S∗. The demand component constraints can be visualized as a matrix
segmented into blocks across the od and t dimensions (Figure 2). The size and overlap of these
blocks are determined by the flexibility constraints and the prevailing network state S∗. For
example, rigid demand components, such as commuting trips, are depicted as smaller, closely
overlapping blocks, reflecting limited flexibility in departure times or destination choices regardless
of S∗. On the other hand, flexible demand components, such as leisure or shopping trips, are
represented by larger blocks spanning multiple time intervals and states, highlighting their broader
flexibility in both departure times and destination choices.

Figure 2: Visualization of constraint blocks within a demand component matrix across od,
t, and state S∗

3 Results

This section details the findings from applying the Flex-GLS model to a case study conducted in
the EUR district of Rome, Italy. The EUR district, covering an area of 51 km² and comprising
54 traffic zones (Figure 3[a]), serves as a complex, real-world testbed for evaluating the model’s
performance. Figure 3[b] provides an overview of the road network, highlighting the placement of
8 strategic traffic count detectors used for data collection and traffic monitoring.

The primary FCD dataset for this analysis comprises records of 1.5 million car trips collected
between September and December 2020 within the Metropolitan City of Rome. A subset of 180,000
trips with destination within the study area was categorized into ’Home,’ ’Work,’ and ’Other’ using
rule-based spatial clustering techniques to identify consistent trip patterns. Additionally, activity
data was sourced from GPT, capturing dynamic information for 752 Points of Interest (POI) within
the area during December 2020. From these datasets, six demand components were identified, each
characterized by distinct spatio-temporal flexibility distributions: Home, Work, Services (MA1),
Sustenance (MA2), Shopping (MA3), and Drop-Off/Pick-Up (DO-PU) (Castiglione et al., 2024).
The analysis revealed that macro-activities demonstrate varying degrees of flexibility based on the
time of day and whether it is a weekday or weekend. These differences are closely tied to congestion
levels, with peak hours constraining flexibility due to heightened traffic, while off-peak hours allow
greater adaptability. This connection between trips flexibility and congestion levels underpins the
state-specific enhancements examined in this study.
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Figure 3: Case study: (a) Traffic Zones (b) Road Network and Detectors of the Eur district
of Rome

To expand the scope of the analysis, an additional FCD dataset from 2023 was incorporated. This
dataset captures a broader spectrum of network conditions and flexibility measures, encompassing
higher congestion states absent in the 2020 data, which largely reflects reduced activity levels
due to peculiar conditions. By including the 2023 data, the study accounts for a wider range of
congestion scenarios, providing a more comprehensive understanding of the relationship between
congestion and spatio-temporal flexibility.

The Flex-GLS and standard GLS models were evaluated across 16 time intervals, each lasting 15
minutes, between 08:00 AM and 12:00 PM. Each demand component was analyzed within specific
time windows to capture varying temporal dynamics: a time window T = 4 for ’Home’ and ’Work’;
T = 8 for ’Services’ (MA1) and ’Drop-Off/Pick-Up’ (DO-PU); and T = 16 for ’Sustenance’ (MA2)
and ’Shopping’ (MA3). While these time intervals were initially chosen based on general observa-
tions, the full paper will report the details of how these windows are influenced by the network’s
state, demonstrating their dynamic dependence on prevailing congestion conditions rather than
being fixed.

The performance of GLS and Flex-GLS is analyzed under two distinct congestion scenarios. The
results for a low-congestion scenario are presented in Tables 1 and 2, where the historical seed
matrix was reduced by 30% to reflect the reduced congestion levels observed during the FCD data
collection period. In this scenario, the Flex-GLS model consistently outperforms the standard GLS,
particularly in its ability to capture the spatio-temporal flexibility of various demand components.

Subsequently, the analysis extends to a high-congestion scenario, where the flexibility parame-
ters are calibrated based on a lower congestion state than that prevailing during the estimation
procedure. While the Flex-GLS model still demonstrates superior performance compared to the
standard GLS, leveraging its enhanced capacity to improve the observability of OD variables, the
accuracy of individual demand component estimations decreases when flexibility parameters are
misaligned with the network’s current state. This underscores the critical importance of dynami-
cally adapting flexibility parameters to accurately reflect real-time congestion conditions, ensuring
optimal performance of the estimation process.

Table 1: RMSE Comparisons Between Flex-GLS and
GLS Models (Low-Congestion Scenario)
RMSE GLS Flex-GLS

Detected Counts vs. Simulated Flows (Initial) 84.8 84.8

Detected Counts vs. Simulated Flows (Final) 33.0 25.3

Real vs. Seed Demand 19.1 19.1

Real vs. Estimated Demand 13.2 7.6

Table 2: Performance Compari-
son Across Demand Components
(Low-Congestion Scenario)
RMSE GLS - Real Flex-GLS - Real
Home 4.3 3.5
Work 1.4 0.6
DO-PU 3.6 1.2
MA1 5.8 4.2
MA2 5.1 2.7
MA3 7.2 3.3
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Table 3: RMSE Comparisons Between Flex-GLS and
GLS Models (High-Congestion Scenario)
RMSE GLS Flex-GLS

Detected Counts vs. Simulated Flows (Initial) 87.2 87.2

Detected Counts vs. Simulated Flows (Final) 42.3 35.8

Real vs. Seed Demand 21.5 21.5

Real vs. Estimated Demand 15.6 10.8

Table 4: Performance Compari-
son Across Demand Components
(High-Congestion Scenario)
RMSE GLS - Real Flex-GLS - Real
Home 5.1 4.4
Work 2.1 1.2
DO-PU 4.5 2.8
MA1 6.9 5.6
MA2 6.2 4.3
MA3 8.4 5.8

4 Conclusion

This study presents a congestion-aware enhancement of the Flex-GLS model, underscoring the
significance of incorporating state-specific flexibility parameters to improve demand estimation
accuracy under varying network conditions. The initial results highlight the model’s effectiveness
in capturing the spatio-temporal flexibility of demand components, consistently outperforming the
standard GLS across both low and high-congestion scenarios. However, the analysis also emphasizes
the necessity of dynamically aligning flexibility parameters with the current congestion state, as
misalignment can degrade performance, particularly for flexible components.

The full paper will delve deeper into the intricate relationship between flexibility parameters and
network congestion states, addressing both global variations and localized disruptions. This analy-
sis will offer a comprehensive framework for understanding the impact of congestion on the spatio-
temporal flexibility of different demand components. Furthermore, the study will provide a detailed
assessment of the Flex-GLS model’s performance when flexibility parameters are precisely tailored
to real-time network conditions. This evaluation will highlight the model’s adaptability and accu-
racy, demonstrating its potential as a robust tool for dynamic origin-destination matrix estimation
in modern urban networks experiencing diverse congestion scenarios.
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