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SHORT SUMMARY 

The multiple discrete-continuous extreme value (MDCEV) model estimates individuals’ prefer-

ences for multiple alternatives and their usage, while accounting for satiation–the diminishing 

marginal utility from consuming additional units of each alternative–in a closed form. However, 

existing models lack flexibility due to specific assumptions about the utility function (e.g., mon-

otonicity and parabolicity), leading to poor finite sample properties and prediction errors when 

the true data-generating process deviates from these assumptions. This study relaxes these as-

sumptions by specifying the satiation parameters using lattice networks (LN),  piecewise linear 

functions that flexibly model nonlinear attribute effects and employ multilinear interpolation to 

capture complex attribute interactions. The proposed MDCEV-LN demonstrated high predictive 

accuracy in budget allocation in a Monte Carlo study. At the same time, it maintains interpreta-

bility with added flexibility to accommodate various functional forms, including traditional log-

linear satiation trend. Thus, MDCEV-LN offers an accurate, flexible and interpretable framework 

for discrete-continuous choice analysis. 
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1. INTRODUCTION 

Activity-based models (ABMs) describe travel demand as the outcome of activity time-use deci-

sions. ABMs estimate how individuals seek to fulfill their preferences to engage in various recre-

ational and social activities and distribute time across these activities within a given time budget 

(Arentze and Timmermans, 2004; Bhat, 2005).  

 

Multiple discrete-continuous choice models are suitable to elicit such activity time-use decisions 

as they can jointly model discrete alternative choices and continuous budget allocation (Hane-

mann, 1984). Early discrete-continuous choice models (Hanemann, 1984; Dubin and McFadden, 

1984) were limited to extreme corner solutions, where only a single alternative could be chosen 

(Hanemann et al., 2024). Kim et al. (2002) extended this framework to general corner solutions, 

allowing the simultaneous choice of multiple alternatives through a translated nonlinear additive 

utility function. However, their approach lacked a closed form and was computationally intracta-

ble. Bhat (2005, 2008) addressed this limitation by proposing the multiple discrete-continuous 

extreme value (MDCEV) model, introducing a multiplicative log-extreme value error term into 

the utility function. The MDCEV model, as an extension of the multinomial logit (MNL) model, 

provides a closed-form choice probability functions for modeling multiple discrete and continu-

ous preferences. 

 

However, existing MDCEV studies typically assume, based on domain knowledge, how satiation 

over time affects the utility function. These assumptions may not align with intuitive or observed 

behavior (e.g., monotonically increasing utilities fail to capture attributes with potential non-mon-

otonic patterns) (Wang and Ye, 2024). Neural networks can significantly enhance the predicta-

bility of utility-based models by flexibly capturing the nonlinear relationships (Sifringer et al., 

2020; Han et al. 2022). However, the excessive flexibility of neural networks may lead to viola-

tion of domain knowledge assumptions or result in misinterpretations (Kim and Bansal, 2024). 

There is a need to specify utility functions through more interpretable yet flexible functions than 

traditional neural networks that can accommodate various functional forms.    

 

To this end, the lattice network (LN) (You et al., 2017) can flexibly represent utility functions as 

piecewise linear functions. A recent study by Kim and Bansal (2024) demonstrated the application 

of LN to specify utility functions in a discrete choice model that maintains partial monotonicity 

for a subset of attributes (e.g., utility decreases as travel cost increases) while offering flexibility 

comparable to neural networks. 

 

This study proposes a novel method to flexibly and interpretably estimate the parameters of the 

MDCEV model using LNs. Compared to traditional MDCEV models, the proposed approach 

captures nonlinear and high-dimensional relationships while providing a more flexible represen-

tation of how individuals allocate time across various activities. 

2. METHODOLOGY 

In this section, we review the structure of the MDCEV model and explain the principles of lattice 

networks (LN). We then describe the specific architecture of lattice networks used to estimate the 

parameters of the MDCEV model. 
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MDCEV model 

Bhat (2008) proposed a utility function that accommodates multiple discreteness in a closed form. 

Without loss of generality, assume that the first good (e.g., staying home activity) is the essential 

Hicksian composite outside good. The utility function in the traditional MDCEV model is ex-

pressed as follows: 

 

 𝑈(𝒕) =
1

𝛼1
𝜓1𝑡1

𝛼1 + ∑
𝛾𝑘

𝛼𝑘
𝜓𝑘 {(

𝑡𝑘

𝛾𝑘
+ 1)

𝛼𝑘
− 1}𝐾

𝑘=2  (1) 

 

where 𝑈(𝒕) is quasi-concave, increasing, and continuously differentiable with respect to the con-

sumption quantity (𝐾 × 1)-vector 𝒕 (𝑡𝑘 ≥ 0 for all 𝑘). The parameters 𝜓𝑘, 𝛼𝑘, and 𝛾𝑘 are associ-

ated with good 𝑘 (e.g., activity-specific parameters). The function 𝑈(𝒕) is valid if 𝜓𝑘 > 0, 𝛼𝑘 ≤
1, and 𝛾𝑘 > 0 for all 𝑘. Here, 𝜓𝑘 represents the baseline marginal utility, or the marginal utility 

at zero consumption. 𝛾𝑘 and 𝛼𝑘 serve as satiation parameters, influencing the consumption level 

of good 𝑘. Specifically, 𝛾𝑘 controls satiation by shifting consumption quantity threshold where 

utility starts diminishing, while 𝛼𝑘 modulates satiation intensity by controlling how quickly util-

ity diminishes as consumption increases. There is no 𝛾1 term for the first good (i.e., the composite 

outside good like staying home) because it is assumed that individuals always allocate some por-

tion of their budget to it, regardless of other choices. In practice, disentangling the effects of 𝛾𝑘 

and 𝛼𝑘 is often challenging. Bhat (2008) suggests estimating models with both the 𝛼-profile and 

𝛾-profile, then selecting the specification with better statistical fit. Generally, the 𝛾-profile has 

demonstrated better performance than the 𝛼-profile (Bhat et al., 2016) and is therefore more fre-

quently adopted (Calastri et al., 2017; Jian et al., 2017). Moreover, the 𝛾-profile provides a more 

intuitive explanation of consumption patterns (Pinjari and Bhat, 2021). When estimating the 𝛾-

profile, it is assumed that 𝛼𝑘 → 0 ∀𝑘, resulting in the utility function taking the following form: 

 

 𝑈(𝒕) = 𝜓1ln𝑡1 + ∑ 𝛾𝑘𝜓𝑘 ln {(
𝑡𝑘

𝛾𝑘
+ 1)}𝐾

𝑘=2  (2) 

 

Bhat (2018) pointed out that the ln𝑡1 term in the traditional MDCEV formulation necessitates the 

prediction of the continuous value of the outside good for calculating the discrete choice proba-

bility because small differences in ln𝑡1 significantly affect the utility due to the logarithmic nature. 

This dependence leads to a tight linkage between the discrete and continuous components, as the 

ln𝑡1 term relies on the specific combination of alternatives consumed (Bhat, 2018). To better sep-

arate the discrete component from the continuous component, Bhat (2018) proposed a linear-in-

consumption utility for the outside good. Under this assumption, the 𝐿𝛾-profile (linear utility for 

the outside good combined with a 𝛾-profile for the inside goods) utility function is expressed as 

follows:  

 

 𝑈(𝒕) = 𝜓1𝑡1 + ∑ 𝛾𝑘𝜓𝑘 ln {(
𝑡𝑘

𝛾𝑘
+ 1)}𝐾

𝑘=2  (3) 

 

This enables the prediction of discrete choices even in the absence of observations on continuous 

consumption, as the exact consumption quantity 𝑡1 is less critical, given that it is proportionally 

increase the utility. 

Lattice networks 

The traditional MDCEV model assumes a monotonically increasing utility with continuous con-

sumption, limiting its ability to capture non-monotonic utility patterns (Wang and Ye, 2024). 
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Consequently, utility misspecification in utility-based models can induce bias in inference of at-

tribute effects and reduce the predictability (Sifringer et al., 2020). Deep neural networks (DNN) 

flexibly model the complex relationships in large-scale data, without relying on theoretical as-

sumptions (van Cranenburgh et al., 2022). However, their complex structure result in low inter-

pretability (Lipton, 2018) and sometimes produce counter-intuitive inference regarding attribute 

effects (Wang et al., 2021). 

 

Lattice networks (LN) offer both flexibility and interpretability for discrete choice modeling by 

representing utility functions in a piecewise linear form (Kim and Bansal, 2024). LN consist of 

three layers: input calibrators, lattice functions, and output calibrators. The input calibrators trans-

form real-valued inputs into values within a specific interval using a piecewise linear function, 

preparing them for the lattice layer. Figure 1 illustrates an example of the piecewise linear trans-

form in the input calibrators. 

 

 
 

Figure 1: Piecewise Linear Transform in the Input Calibrators 
 

Each lattice function operates as a linearly interpolated multidimensional look-up table. Let the 

dimension of the lattice function be denoted as 𝑆, and assume that the output from the input cali-

brators is normalized to the range [0,1]. Each S-dimensional look-up table takes the unit hyper-

cube [0,1]𝑆 as input, and has 2𝑆 parameters 𝜃 ∈ ℝ2𝑆
 corresponding to the outputs at the vertices 

of the unit hypercube. Multilinear interpolation is used to estimate values between the vertices. 

Let the linear interpolation weights be denoted as 𝑤(𝑥): [0,1]𝑆 → [0,1]2𝑆
. These weights can be 

expressed as 𝑤(𝑥)𝑇𝜃 , where each component of  𝑤(𝑥) is given by:  

 

 𝑤(𝑥)[𝑗] = ∏ 𝑥[𝑑]𝑣𝑗[𝑑](1 − 𝑥[𝑑])1−𝑣𝑗[𝑑]𝑆
𝑑=1  (4) 

 

where 𝑣𝑗[∙] is the coordinate vector of the 𝑗th vertex of the unit hypercube, and 𝑗 = 1, … , 2𝑆. For 

example, as shown in Figure 2, if 𝑥 = (0.3, 0.7) , 𝑤(𝑥) = ((1 − 0.3)(1 − 0.7), (1 −

0.3)0.7, 0.3(1 − 0.7), 0.3 ∙ 0.7) = (0.21,0.49,0.09,0.21). 
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Figure 2: Multilinear Interpolation in the Lattice Function 

The output calibration layer converts the lattice function’s output as utility. The output calibration 

layer has exactly the same function structure as the input calibration layer. 

Model structure 

This study presents two data-driven models for activity time-use analysis. The first model, 

MDCEV-DNN, is a standard DNN that predicts discrete-continuous choice based on individual-

specific attributes. The second model, MDCEV-LN, integrates DNN and LN, where DNN esti-

mates 𝜓𝑘 and LN estimates 𝛾𝑘 in Equation 3, respectively. Figure 3 shows the structure of the 

MDCEV-DNN model. This model uses DNN to transform individual-specific attributes 𝑥 into 

parameter 𝜓𝑘 for each activity. Applying the softmax function to 𝜓𝑘 outputs activity choice prob-

abilities 𝑝(1), … , 𝑝(𝐾) that sum to 1. Multiplying these probabilities by the total budget 𝑇 (24 

hours for activity-time use analysis) provides prediction of time allocated to each activity. While 

this model can predict activity time-use using only individual-specific attributes, it has the disad-

vantage of being unable to separate the discrete and continuous component.  

 

 
 

Figure 3: MDCEV-DNN Model Structure  
 

The MDCEV-DNN model is trained to minimize the reconstruction error between the activity 

time allocation 𝒕 and reconstructed 𝒕∗. The reconstruction error is expressed as shown in Equa-

tion 5. 

 

 𝑀𝑆𝐸 =
1

𝐾
∑ |𝑡𝑘

∗ − 𝑡𝑘|𝐾
𝑘=1

2
 (5) 

 

The MDCEV-LN model is designed to separately capture the two parameters of the 𝐿𝛾-profile in 

Equation 3, 𝜓𝑘 and 𝛾𝑘. Figure 4 illustrates the structure of the MDCEV-LN model. The DNN 
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transforms individual-specific attributes 𝒙 into parameter 𝜓𝑘, which is associated with discrete 

choice. In this context, the DNN learns complex relationships between individual-specific attrib-

utes and 𝜓𝑘 in a data-driven manner. The LN represents the satiation parameter 𝛾𝑘 as a piecewise 

linear function over time 𝒕. As in Equation 3, the utility for each alternative is calculated by 

multiplying 𝜓𝑘 and 𝑡1 for the outside good, and multiplying 𝜓𝑘 and 𝛾𝑘 for inside goods. Finally, 

applying softmax function to the utility and multiplying by the total budget 𝑇 outputs the pre-

dicted time allocation for each activity. The MDCEV-LN model is trained to minimize the same 

reconstruction error as the MDCEV-DNN. 

 

 
 

Figure 4: MDCEV-LN Model Structure  

3. RESULTS AND DISCUSSION 

We conducted a simulation study using synthetic data to evaluate the performances of the pro-

posed models. Following Saxena et al. (2022a), we generated 𝐿𝛾-profile simulation data for three 

scenarios. For detailed information about the synthetic data generation, refer to Saxena et al. 

(2022a). The three scenarios are distinguished by the proportion of inside goods as follows: 

 

(a) Scenario 1: Total budget of 50,000 units, with very small inside goods consumption av-

eraging less than 1% of the total budget 

(b) Scenario 2: Total budget of 1,000 units, with moderate inside goods consumption aver-

aging 16% of the total budget 

(c) Scenario 3: Total budget of 1,000 units, with significant inside goods consumption aver-

aging 43% of the total budget 

 

We trained the proposed models using 80% of the synthetic data and evaluated their performance 

on the remaining 20% test set. The model performance was evaluated using the Brier score and 

Root Mean Squared Error (RMSE). The Brier score (Brier, 1950) measures the accuracy of prob-

ability prediction by quantifying distance between predicted probabilities and actual outcomes. 

For 𝑁 individuals where 𝐾 alternatives can be selected, the Brier score is defined as shown in 

Equation 6. 

 

 𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
∑ ∑ (𝑝𝑛,𝑘

∗ − 𝑝𝑛,𝑘)
2𝐾

𝑘=1
𝑁
𝑛=1  (6) 
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𝑝𝑛,𝑘
∗  and 𝑝𝑛,𝑘 represent the predicted and observed choice probabilities for the 𝑘th alternative in 

the 𝑛th individual, respectively. The Brier score decreases as prediction accuracy increases. Ta-

ble 1 shows the performance of MDCEV, MDCEV-DNN and MDCEV-LN across the three sce-

narios. 

 

Table 1: Performance Evaluation in the Simulation Study 

 
 Metrics Model Alt 1 Alt 2 Alt 3 Alt 4 

Scenario 1 Brier score MDCEV 0.0251 0.0033 0.0072 0.0143 

MDCEV-DNN 0.0203 0.0031 0.0067 0.0124 

MDCEV-LN 0.0006 0.0004 0.0004 0.0005 

RMSE MDCEV 7,928 2,860 4,246 5,976 

MDCEV-DNN 7,120 2,765 4,095 5,575 

MDCEV-LN 1,255 965 1,005 1,115 

Scenario 2 Brier score MDCEV 0.0299 0.0036 0.0088 0.0186 

MDCEV-DNN 0.0246 0.0034 0.0077 0.0162 

MDCEV-LN 0.0009 0.0004 0.0004 0.0004 

RMSE MDCEV 173.0 60.3 94.1 136.5 

MDCEV-DNN 156.8 58.3 87.6 127.4 

MDCEV-LN 30.8 20.1 19.1 20.1 

Scenario 3 Brier score MDCEV 0.1331 0.0786 0.0088 0.0625 

MDCEV-DNN 0.0928 0.0603 0.0083 0.0507 

MDCEV-LN 0.0030 0.0015 0.0011 0.0016 

RMSE MDCEV 364.8 280.3 93.8 250.1 

MDCEV-DNN 304.7 245.6 90.9 225.1 

MDCEV-LN 54.5 38.6 32.6 39.5 

 

Alt 1 represents the outside good, while Alt 2 through Alt 4 correspond to inside goods. The 

original MDCEV model showed low predictability despite the simulation data mimicking its data 

generation process. This aligns with the inconsistency of the original MDCEV reported in previ-

ous research (Saxena et al., 2022b). MDCEV-DNN showed higher predictability compared to 

MDCEV; however, the satiation effect cannot be isolated. The MDCEV-LN outperformed 

MDCEV-DNN in both Brier score and RMSE, demonstrating superior predictability. This sug-

gests that the parameters captured by the MDCEV-LN structure accurately reconstruct the deci-

sion-making process of the 𝐿𝛾-profile simulation data. Figure 5 compares the satiation effects 

estimated by the LN with the true log-linear satiation effects of the simulation data across all 

scenarios. Note that utility is computed as the product of 𝜓𝑘(𝑥) and 𝛾𝑘(𝑥); hence, their scales 

may differ. The vertical dotted lines in the figure represent the 95th percentile for each alternative. 

Values significantly exceeding the 95th percentile (on the right) are deemed invalid. As shown in 

the figure, the estimated 𝛾-functions across all scenarios and alternatives maintain a log-linear 

function trend, being monotonically increasing but with gradually decreasing slopes. 

 

The simulation study results across three scenarios with varying assumptions about the proportion 

of inside goods suggest that MDCEV-LN has potential to understand satiation effects without 

relying on handcrafted assumptions about the utility function, extending its applicability to vari-

ous discrete-continuous choice modeling contexts such as activity time-use, energy consumption 

and vehicle purchases. 
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Figure 5: Satiation Effects Estimated by the MDCEV-LN Model 
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4. CONCLUSIONS 

Traditional MDCEV models that rely on hand-crafted utility specifications suffer from issues of 

inference bias and low predictability. This study proposed MDCEV-LN that estimates MDCEV 

model’s satiation parameters using LN. LN derive flexible yet interpretable utility functions with-

out utility specification by employing piecewise linear functions and multilinear interpolation. 

 

We generated synthetic data following the 𝐿𝛾-profile and conducted a simulation study to recover 

the parameters using MDCEV-LN. In the simulation study, MDCEV-LN showed higher predict-

ability compared to the benchmarked original MDCEV and MDCEV-DNN. Also, it efficiently 

separates baseline marginal utility from satiation effect and captures the log-linear trend of the 

satiation parameter. MDCEV-LN’s high performance across multiple scenarios with varying pro-

portions of inside goods suggests its potential for application in various discrete-continuous 

choice contexts, including activity time-use, energy consumption, and vehicle purchases. 

 

This study only conducted a simulation study based on the 𝐿𝛾-profile; however, the flexible yet 

interpretable characteristics of LN have the potential to outperform existing models on more com-

plex utility specification with non-linear and interaction effects. We are conducting more exten-

sive simulation studies using a non-linear specification in the data generating process to evaluate 

the potential of MDCEV-LN in capturing the combination of monotonic and non-monotonic re-

lationships between activity duration and satiation effects, which are challenging to model with 

existing approaches. 

ACKNOWLEDGEMENTS 

This work is financially supported by Korea Ministry of Land, Infrastructure and Transport 

(MOLIT) as Innovative Talent Education Program for Smart City, by Basic Science Research 

Programs through the National Research Foundation of Korea (NRF) grant funded by the Korea 

Government (MSIT) (No.2022R1A2C2012835). Eui-Jin Kim was supported by a National Re-

search Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.RS-

2023-00246523). The authors used OpenAI’s ChatGPT to correct the typos and the grammar of 

this manuscript. The authors verified the accuracy, validity, and appropriateness of any content 

generated by the language model. 

REFERENCES 

Arentze, T. A., Timmermans, H. J. 2004. A learning-based transportation oriented simulation 

system. Transportation Research Part B: Methodological, Vol. 38, No. 7, pp. 613-633. 

 

Bhat, C. R. 2005. A multiple discrete–continuous extreme value model: formulation and applica-

tion to discretionary time-use decisions. Transportation Research Part B: Methodological, Vol. 

39, No. 8, pp. 679-707. 

 

Bhat, C. R. 2008. The multiple discrete-continuous extreme value (MDCEV) model: role of utility 

function parameters, identification considerations, and model extensions. Transportation Re-

search Part B: Methodological, Vol. 42, No. 3, pp. 274-303. 

 



10 

 

Bhat, C. R., Astroza, S., Bhat, A. C., Nagel, K. 2016. Incorporating a multiple discrete-continuous 

outcome in the generalized heterogeneous data model: Application to residential self-selection 

effects analysis in an activity time-use behavior model. Transportation Research Part B: Meth-

odological, Vol. 91, pp. 52-76. 

 

Bhat, C. R. 2018. A new flexible multiple discrete–continuous extreme value (MDCEV) choice 

model. Transportation Research Part B: Methodological, Vol. 110, pp. 261-279. 

 

Brier, G. W. 1950. Verification of forecasts expressed in terms of probability. Monthly Weather 

Review, Vol. 78, No. 1, pp. 1-3. 

 

Calastri, C., Hess, S., Daly, A., Carrasco, J. A. 2017. Does the social context help with under-

standing and predicting the choice of activity type and duration? An application of the Multiple 

Discrete-Continuous Nested Extreme Value model to activity diary data. Transportation Re-

search Part A: Policy and Practice, Vol. 104, pp. 1-20. 

 

Dubin, J. A., McFadden, D. L. 1984. An econometric analysis of residential electric appliance 

holdings and consumption. Econometrica: Journal of the Econometric Society, pp. 345-362. 

 

Han, Y., Pereira, F. C., Ben-Akiva, M., Zegras, C. 2022. A neural-embedded discrete choice 

model: Learning taste representation with strengthened interpretability. Transportation Research 

Part B: Methodological, Vol. 163, pp. 166-186. 

 

Hanemann, M., Labandeira, X., Labeaga, J. M., Vásquez-Lavín, F. 2024. Discrete-continuous 

models of residential energy demand: A comprehensive review. Resource and Energy Economics, 

p. 101426. 

 

Hanemann, W. M. 1984. Discrete/continuous models of consumer demand. Econometrica: Jour-

nal of the Econometric Society, pp. 541-561. 

 

Jian, S., Rashidi, T. H., Dixit, V. 2017. An analysis of carsharing vehicle choice and utilization 

patterns using multiple discrete-continuous extreme value (MDCEV) models. Transportation Re-

search Part A: Policy and Practice, Vol. 103, pp. 362-376. 

 

Kim, E. J., Bansal, P. 2024. A new flexible and partially monotonic discrete choice model. Trans-

portation Research Part B: Methodological, Vol. 183, p. 102947. 

 

Kim, J., Allenby, G. M., Rossi, P. E. 2002. Modeling consumer demand for variety. Marketing 

Science, Vol. 21, No. 3, pp. 229-250. 

 

Lipton, Z. C. 2018. The mythos of model interpretability: In machine learning, the concept of 

interpretability is both important and slippery. Queue, Vol. 16, No. 3, pp. 31-57. 

 

Pinjari, A. R., Bhat, C. 2021. Computationally efficient forecasting procedures for Kuhn-Tucker 

consumer demand model systems: Application to residential energy consumption analysis. Jour-

nal of Choice Modelling, Vol. 39, p. 100283. 

 

Saxena, S., Pinjari, A. R., Bhat, C. R. 2022. Multiple discrete-continuous choice models with 

additively separable utility functions and linear utility on outside good: Model properties and 

characterization of demand functions. Transportation Research Part B: Methodological, Vol. 

155, pp. 526-557. 

 



11 

 

Saxena, S., Pinjari, A. R., & Paleti, R. 2022. A multiple discrete-continuous extreme value model 

with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity partic-

ipation and time-use analysis. Transportation Research Part B: Methodological, Vol. 166, pp. 

259-283. 

 

Sifringer, B., Lurkin, V., Alahi, A. 2020. Enhancing discrete choice models with representation 

learning. Transportation Research Part B: Methodological, Vol. 140, pp. 236-261. 

 

Van Cranenburgh, S., Wang, S., Vij, A., Pereira, F., Walker, J. 2022. Choice modelling in the age 

of machine learning-discussion paper. Journal of choice modelling, Vol. 42, p. 100340. 

 

Wang, S., Mo, B., Zhao, J. 2021. Theory-based residual neural networks: A synergy of discrete 

choice models and deep neural networks. Transportation Research Part B: Methodological, Vol. 

146, pp. 333-358. 
 

Wang, M., Ye, X. 2024. Development of Multiple Discrete-Continuous Extreme Value Model 

with Non-Monotonic Utilities: Formulation and Application to Outdoor Non-Mandatory Time-

Use Decisions. Transportation Research Record, Vol. 2678, No. 9, pp. 655-669. 

 

You, S., Ding, D., Canini, K., Pfeifer, J., Gupta, M. 2017. Deep lattice networks and partial mon-

otonic functions. Advances in Neural Information Processing Systems, No. 30. 

 

 


