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Short summary

We study shortest-path-based accessibility by building a so-called access graph where two nodes
share an edge if one is reachable from the other within a given time budget. This is achieved
by obtaining generalised travel times between all pairs of nodes and directly connecting the pairs
where the generalised travel time condition is satisfied. We then observe the time evolution of the
access graph, increasing the time budget from zero to the maximum travel time in the network.
Average degree and degree distributions of the newly proposed access graphs for 51 metro networks
are analysed and two global measures are proposed as network-level indicators of accessibility. For
all metro networks in our empirical analysis, a logistic-like growth of average degree with time
budget is observed. We see a large potential of the introduced graph representation for in-depth
studies of accessibility.
Keywords: public transport, accessibility, network science, metro network, access equity

1 Introduction

Accessibility is one of the main determinants of public transport (PT) use. The Hansen definition
of accessibility as travel impedance between spatially dispersed opportunities for activity is at
the core of defining accessibility indicators (Hansen, 1959; Geurs & Van Wee, 2004). In PT access
studies, generalised travel time is typically comprised of in-vehicle and waiting times, together with
transfer costs. Network-science-based indicators are increasingly used in investigating transport
network structure and performance (Derrible & Kennedy, 2011; Ding et al., 2019; Shanmukhappa
et al., 2019). Luo et al. (2019) suggested connecting network science and accessibility by calculating
average shortest paths for each node to all other nodes, providing a Hansen-like indicator similar
to closeness centrality.
Passengers’ travels take place on (approximately) shortest paths. Past studies focused on either
analyzing the relative importance of nodes using centrality indicators (Cats, 2017; Šfiligoj et al.,
2025) or compared different networks using an aggregate metric such as the average shortest path
from each node to all other nodes, known as network (in)efficiency (Dimitrov & Ceder, 2016; de
Regt et al., 2019). We argue that aggregated values like these do not provide a sufficiently complete
and insightful information when comparing accessibility across networks. To this end, we introduce
a novel graph representation, called an access graph, where two nodes share an edge if they can
be reached from one another within a given time budget. The distance matrix of generalised
travel times is based on the unweighted and frequency-weighted P-space representation, and in-
vehicle-time-weighted L-space representation. Importantly, in the resulting graph representation,
while retaining the same set of nodes, the edges directly indicate accessibility between two nodes.
Specifically, node degree in the access graph directly provides the number of reachable nodes within
the time budget. Based on this representation, we study the temporal dependence of node degree
distributions, focusing on average degree. In addition, the Gini coefficient of the degree distribution
is used as an indicator of access equity (Gori et al., 2020).
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2 Methodology

In the access graph GA, the nodes represent the stops of a PTN, and the edge set is obtained
as follows. The generalised distance matrix D of the network is obtained by calculating distance
matrices in three different PTN representations: DPu for the unweighted P-space representation,
DP f for the frequency-weighted P-space representation, and DLt for the in-vehicle-time-weighted
L-space representation. The generalised distance matrix is then calculated as:

D = DLt + wwaitDP f + wtransfer(DPu − 1), (1)

where wwait = 2 is the waiting time weight and wtransfer = 5 min is the transfer penalty. The
values were determined from literature and reflect average passengers’ valuation of time (Yap et
al., 2024). The term with the unweighted P-space representation, (DPu − 1), counts the number
of transfers. The generalised travel time between nodes i and j is denoted by dij and equals the
corresponding element in the generalised distance matrix [D]ij .
In the next step, the time budget tb is introduced, i.e. the maximum total travel time allowed.
Then there exists an edge between nodes i and j if dij < tb. The adjacency matrix A with entries
aij of the access graph is thus obtained from the generalised distance matrix:

aij =

{
1 dij ≤ tb

0 otherwise
(2)

The edge set of the access graph thus depends on the time budget. GA obtained in this process is
an undirected unweighted graph. Although the standard graph representations are implicit in its
construction, the edges connect nodes reachable within the time budget by following any shortest
path. Therefore, node degree D of GA is a direct measure of stop-level accessibility.
The evolution of the access graph is observed with increasing the time budget from 0 to maxi,j dij .
At tb = 0 there are no edges in the access graph (i.e. GA is an empty graph), and at tb = maxi,j dij ,
A is a complete graph. The average degree D in each case is 0 and N−1, respectively. To examine
global accessibility indicators, the shape of the average degree growth with increasing tb is studied.
For almost all cities in our case study, a logistic-like convergence to the maximum degree is ob-
served. Thus, there is a point where the rate of average degree growth starts to decrease. In a
continuous limit, this would correspond to the point of inflection, where a function changes from
convex to concave, or vice-versa, and where typically the second derivative is zero. At this point,
from the access perspective, the point at which the maximum of the first derivative is obtained, is
interesting. While the access graph describes cumulative accessibility, the first derivative approx-
imation gives an indication of interval accessibility (i.e. number of nodes reachable in the time
interval [tb(k), tb(k + 1)], where k is the time step counter). Here, we are working with numeri-
cal approximations and use difference quotients ∆D

∆tb
as approximations of the derivatives. In data,

non-smooth first-order difference quotients, together with multiple points of inflection are observed
for several cities in the case study. Thus, to get a robust measure, the time budget at the global
maximum of ∆D

∆tb
is observed. Note that this corresponds to the time interval with the highest

interval accessibility. The value of δtM = tM/τmax, where tM is the time budget at this maximum,
and τmax is the maximum generalised travel time in the network, is proposed as a global indicator
of PTN accessibility. In addition, the value of the average degree at tM , DM , can be observed.
Alongside the average degree, we observe the tb-dependent degree distributions of the access graph
for access equity assessment. The Gini coefficient is defined as:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x

, (3)

where x = 1
n

∑n
i=1 xi is the distribution mean. The Gini coefficient of the degree distribution

at tM , GM , is used as an indicator of access equity. The Gini index is chosen here rather than
skewness, because the degree distributions in our empirical analysis were found to often exhibit a
bimodal shape.

3 Results and discussion

The proposed methodology was applied to a dataset of metro networks of 51 cities worldwide
(Vijlbrief et al., 2022a,b). For each metro network, access graphs were built for varying time
budgets. tb was varied in the interval [0, τmax], where τmax is the maximum generalised travel
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time in the network, with progressively increasing steps of two minutes. The maximum travel time
varies for each city and increases approximately logarithmically with the size of the network N
(Figure 1). Note that N is correlated with city size and population.
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Figure 1: Scatter plots of the maximum generalised travel time tmax and time at fastest
average degree growth tM vs. number of nodes N . For each variable, one data point
represents a single metro network.

The dependence of degree distributions and average degree on tb results are shown in Figure (2).
Each of the subplots represents a separate city and shows the time evolution of the access graph
with the heatmaps representing node degree distributions. tb is increased in steps of 2 minutes. In
each subplot, the x-axis represents the time budget, and y-axis represents the degree. Heatmap cell
colors represent the percentage of nodes in each degree bin. For a visual explanation of the results,
see Figure 3 for a detailed explanation for an example of the Amsterdam metro network. The
average degree of the access graph at tb is shown with red markers. An S-shaped convergence to
maximum degree is observed in almost all cases. Some networks exhibit a more complex behaviour
(e.g. Athens, Los Angeles and Naples).
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Figure 2: Degree distributions of access graphs with varying tb. Each subplot shows the
time evolution of the access graph with the heatmaps representing node degree distribu-
tions. tb is increased in steps of two minutes. In each subplot, the x-axis represents the
time budget, and y-axis represents the degree. Heatmap cell colors represent the percent-
age of nodes in each degree bin. Average degree of the access graph at tb is shown with
red markers.
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Heatmap of degree distributions for varying time budgets: Amsterdam
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Figure 3: Explanation of the results on the example of the Amsterdam metro network.
The upper plot shows the heatmap of degree distributions with varying time budgets. tb
is increased in steps of 2 minutes. The x-axis represents the time budget, and the y-axis
represents the node degree. Heatmap cell color represents the percentage of nodes in each
degree bin. Thus, each vertical column represents the color-coded histogram of the node
degree distribution. For three values of the time budget, tb = {6, 12, 18}, the heatmap
visualisation is translated into the node degree histograms in the three bottom plots.

The most regular S-shaped behaviour is observed for the largest networks (New York, London and
Paris, among others). In these cases, the value of tM corresponds to the inflection point (i.e. the
"turning point" of the S-curve). Since many of the other networks exhibit less smooth patterns,
the tb at the global maximum of the first difference quotient was taken as a more robust measure.
Figure (4) shows the rate of growth of the average node degree, calculated in discrete steps as
y = D(k+1)−D(k)

tb(k+1)−tb(k)
, where k is the time step. In other words, the y-axis values represent the average

change in the average degree of the access graph when the time budget is increased from the kth
value tb(k) to the next, i.e. (k + 1)th value. The value of tb where y reaches the global maximum
is taken as the value of tM . For example, for the New York metro, the maximum change of y = 8
is observed at tb = 51 min. This means that when the time budget is increased from 50 to 52
minutes, the average degree of the access graph increases by approximately 16, or 8 per minute, on
average. The middle of the interval where this is achieved is taken as the maximum growth time
accessibility indicator tM , meaning tM = 51 min for the New York metro network.
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Figure 4: Rate of the average node degree growth, calculated in discrete steps as y =
D(k+1)−D(k)
tb(k+1)−tb(k)

, where k is the time step. The x-axis shows tb in minutes, while the y-axis
shows the average node degree growth (per minute). The value of tb where y reaches the
global maximum is taken as the value of tM .

Similarly to tmax, tM increases sublinearly with tb (Figure 1), but converges much faster for large
N . This indicates a generally better performance for larger networks. This is expected, as the
individual time budget does not increase, or increases only marginally, with city size. Thus,
both the absolute value of tM and the relative value δt represent distinct accessibility indicators,
the former reflecting the (approximately) universal passenger travel time budget, and the latter
reflecting network performance properties. Note that low values of tM and δt stand for higher
accessibility.
The Gini coefficient GM of the degree distribution of the access graph in tb = tM is taken as an
indicator of access equity. G can take values in the interval [0, 1], where G = 0 means complete
equality and G = 1 means the highest inequality. The relationship between GM and N is shown
in Figure (5). Again, we observe a roughly logarithmic behaviour with a group of outliers in the
upper left corner. For the largest networks, with size N ⪆ 150, the value of the Gini coefficient is
approximately constant, indicating that larger networks tend to offer more equal distributions of
access, compared to the relation observed for small and moderately sized networks (i.e. the growth
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of GM stalls after this N).
The values of all variables are shown in Table (1). The Spearman correlation matrix for all variables
is shown in Figure (6). Spearman correlation was chosen over Pearson due to non-linear relations
between variables. Significant positive correlations (rS ≈ 0.65) are observed for the number of
nodes N and maximum travel time tmax, and N and the time at fastest average degree growth tM ,
which is expected. Similarly, a strong correlation between tM and tmax is observed. Interestingly,
the correlation of the absolute value of the time of fastest growth tM and the value relative to
maximum time δt = tM/tmax is relatively low (rS ≈ 0.4), suggesting the potential of using both
values as accessibility indicators. Notable is the lack of correlation between δt and N , indicating
a similar behaviour over all sizes of networks. On the other hand, the strong positive correlation
between δt and the average degree at the time of fastest growth DM points to a universal behaviour
of average degree growth (observed to be logistic-like in most cases). Moderate positive correlation
of the Gini index of the degree distribution at tM , GM , and N , GM and tmax indicate that larger
networks also tend to have larger disparities in access. Significant negative correlation between the
Gini index and δt indicates that inequity decreases with δt, complementing the previous observation
on the relation to N .
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Figure 5: Scatter plot of the Gini coefficient GM and network size N . For each variable,
one data point represents a single metro network.
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Table 1: Values of the studied variables for each city. N : number of nodes in the network;
tmax: maximum generalised travel time; tM : time of maximum average degree growth;
δt = tM

tmax
; DM : average degree at tM ; GM : Gini index at tM .

City N tmax tM δt DM GM

Amsterdam 39 56 29 0.52 0.57 0.2
Athens 61 126 29 0.23 0.34 0.29
Atlanta 38 116 39 0.34 0.27 0.26
Baltimore 14 44 21 0.48 0.33 0.17
Berlin 174 112 37 0.33 0.48 0.25
Bilbao 42 66 17 0.26 0.34 0.21
Boston 52 94 45 0.48 0.51 0.23
Brussels 59 56 29 0.52 0.62 0.19
Budapest 48 46 27 0.59 0.6 0.2
Buenos Aires 78 62 29 0.47 0.49 0.23
Cairo 61 82 35 0.43 0.48 0.23
Chicago 137 128 59 0.46 0.57 0.23
Cleveland 18 66 25 0.38 0.17 0.15
Copenhagen 39 34 21 0.62 0.64 0.19
Dubai 53 106 33 0.31 0.39 0.18
Genoa 8 28 11 0.39 0.16 0.35
Helsinki 25 64 11 0.17 0.12 0.41
Hyderabad 56 64 35 0.55 0.55 0.18
Kobe 26 86 21 0.24 0.14 0.37
Kochi 21 48 13 0.27 0.09 0.09
Lille 60 60 15 0.25 0.26 0.15
Lisbon 50 44 19 0.43 0.38 0.21
London 261 126 43 0.34 0.53 0.25
Los Angeles 16 72 31 0.43 0.41 0.21
Lyon 40 56 25 0.45 0.51 0.23
Madrid 240 140 37 0.26 0.35 0.35
Malaga 17 50 11 0.22 0.06 0.46
Marseille 29 40 9 0.22 0.05 0.23
Milan 106 82 29 0.35 0.44 0.29
Montreal 67 68 29 0.43 0.41 0.23
Naples 28 88 17 0.19 0.11 0.38
New York 421 154 51 0.33 0.44 0.26
Nuremberg 49 56 25 0.45 0.48 0.22
Oslo 101 98 59 0.6 0.68 0.17
Paris 303 70 27 0.39 0.39 0.28
Philadelphia 50 66 43 0.65 0.67 0.13
Prague 58 48 27 0.56 0.57 0.22
Rennes 15 22 7 0.32 0.28 0.12
Rome 73 94 35 0.37 0.44 0.22
Rotterdam 70 112 37 0.33 0.37 0.26
San Francisco 50 154 61 0.4 0.49 0.24
Santiago 119 72 31 0.43 0.44 0.25
Stockholm 101 94 47 0.5 0.6 0.22
Toronto 75 102 29 0.28 0.35 0.29
Toulouse 37 44 21 0.48 0.55 0.17
Turin 23 38 7 0.18 0.09 0.07
Valencia 95 144 21 0.15 0.16 0.42
Vancouver 52 98 33 0.34 0.4 0.19
Vienna 98 76 27 0.36 0.38 0.27
Warsaw 33 50 27 0.54 0.57 0.18
Washington 89 106 51 0.48 0.51 0.26
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Figure 6: Spearman correlation matrix for accessibility variables.

4 Conclusions

We proposed a novel graph representation of public transport networks: the access graph GA.
The edges in GA are based on shortest paths, as determined from the classic L- and P-space
representations, and directly connect nodes, reachable from one another within a given time budget.
Average degree and degree distributions of the access graphs for 51 metro networks were examined
and two global measures were proposed as accessibility indicators: the time budget of the fastest
growth of average degree, tM , and the relative value tM/tmax. The Gini coefficient of the degree
distribution at tb = tM was used as an access equity indicator.
We see a number of venues for future research. First, we expect a detailed analysis of the degree
distributions and average degree growth with a focus on understanding differences in behaviour
among networks to offer new insights into accessibility. Second, a more detailed analysis of the ac-
cess graph introducing other indicators and examining the behaviour from several perspectives will
provide a more comprehensive equity analysis. Most importantly, we believe that the introduced
access graph offers numerous opportunities for advancing network science and PT accessibility
research. Among the most promising ones we see: i) detailed analyses of the tb-varying connected-
ness and topology of GA, ii) studying the impacts of disturbances on accessibility via simulations,
and iii) introducing land use data into the model.
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