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SHORT SUMMARY 

To address the problem of forecasting the diffusion of innovations, we propose an agent-based model 

to forecast the electric vehicle (EV) market, that considers fuel type choices, simultaneously tackling 

household decision-making and cognition (in the form of coherence evaluation), as well as processes 

of communication between households in their social network, which are the drivers of diffusion in the 

social network. We use a latent class discrete choice model to characterise fuel type choice at the 

household level, including preference heterogeneity, along with attitudinal and emotional effects with 

the hot coherence (HOTCO) model of cognitive consistency. Our agent-based model also incorporates 

direct and indirect communication between households in the network. Results highlight the need for 

diverse measures targeting vehicle purchase, ownership, and usage dimensions to accelerate EV market 

adoption. 
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1. INTRODUCTION 

Electric vehicles (EVs) play an important part in the decarbonisation of the transport sector. Despite the 

vast support from governments worldwide –but especially across developed countries (International 

Energy Agency, 2024) –, EV diffusion has been difficult. A vast literature has tried to understand what 

affects the adoption EVs and to simulate their market diffusion. However, predicting the demand for 

EVs is challenging, mostly due to the complex relationships between individual preferences and social 

influence that determine the propensity to adopt an alternative that has yet to reach its market potential 

and therefore can still be considered “innovative”. The deployment of EVs can be interpreted as the 

aggregate result (diffusion) of a series of decisions taken at the household level (choice), which in turn 

are influenced by the overall levels of adoption in the social network (Domarchi and Cherchi, 2023b). 

 

Agent-based models (ABM) are currently the most popular framework to model all these aspects of 

diffusion of innovations (Zhang and Vorobeychik, 2019; Mehdizadeh et al., 2022). They are in fact 

simplified representations of the social network whose main components (the agents) are capable of 

flexible and autonomous action according to pre-established behavioural rules which determine their 

own decision making and the interaction with other agents in the network. Diffusion emerges as a 

product of these interactions (Nikolic and Kasmire, 2013). While ABM are flexible enough to assess 

the effect of several variables and contextual conditions in the diffusion process, their reliability and 

forecasting ability can often be undermined by the lack of an appropriate theoretical framework for their 

behavioural rules, or the absence of calibration, validation, and grounding (Domarchi and Cherchi, 

2023b).  
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In fact, only a handful of ABM studies addressing EV diffusion in the literature use appropriate models 

(in the form of DCM) to simulate the choice side of the decision process as part of their agent decision 

rules. In addition, in their most basic formulation, DCM are “static” – their parameters do not change 

over time –, which means that, when used, they need to be adapted to address the dynamic nature of the 

diffusion process (i.e., the positive impact of adoption in the social network on the probability of buying 

an EV). Similarly, although studies focusing on the choice side of the problem have assessed the role 

of psychological traits such as pro-environmental attitudes, innovative character, car performance 

anxiety, and the symbolic value of the car, in EV choice probabilities (Liao et al., 2017; Wicki et al., 

2023), these dimensions have seldom been added to diffusion-substitution models. Cognitive 

consistency theories, which offer a more nuanced understanding of the relationship between attitudes, 

emotions, and behavioural intentions, have been proposed as a flexible method to incorporate these 

aspects in ABM simulations. However, their use has been limited (Wolf et al., 2015; Kangur et al., 

2017; Liang et al., 2022), and never in integration with a DCM. 

  

Preference heterogeneity has also been found to play a significant role in the probability of adoption 

(Guerra and Daziano, 2020; Li et al., 2020; Rommel and Sagebiel, 2021; Domarchi et al., 2024a); 

however, as most ABM with DCM components tend to only include simple specifications (such as 

MNL), they fail to account for this effect. Finally, while every diffusion model includes a social 

diffusion component that roughly complies with Rogers (2003) innovation diffusion theory, this is 

usually implemented in a simplified fashion, without a deep analysis of agent interaction and 

communication.  

 

In this paper, we propose an ABM that addresses EV diffusion and substitution1.Our model considers 

fuel type choices, simultaneously tackling household decision-making and cognition (in the form of 

coherence evaluation), as well as processes of communication between households in their social 

network, which are the drivers of diffusion in the social network. Our ABM is initialised with data 

grounded in the study area (UK context), and using parameters calibrated to ensure that they represent 

the market of interest. As our interest lies on the behavioural and social side of the EV diffusion 

problem, the proposed framework is a single-agent ABM which only addresses other stakeholders (car 

manufacturers, car sellers, energy providers, government) indirectly, as part of their modelling 

scenarios. Our paper contributes to the specialised literature by:  

1) Addressing preference heterogeneity in choices for vehicle segments and fuel types – an effect 

largely neglected in the literature – using a latent class discrete choice model (LCCM) as the 

behavioural rule for agents in the model.  

2) Incorporating attitudinal and emotional effects into the decision-making process with the hot 

coherence (HOTCO) algorithm, which considers the interaction and compatibility between 

individual beliefs and attitudes and their perceived effects on decision outcomes. The method, 

which allows for non-additive and non-linear effects of attitudinal evaluation in individual 

choices, has seldom been used in the context of ABM, but never concurrently with a DCM. 

3) Analysing the effects of communication with other agents in the attitudinal and emotional 

evaluations of vehicle segment and fuel type alternatives, simulating direct and indirect 

communication between agents in the social network. These two effects have also never been 

used in conjunction with a DCM behavioural rule in an ABM simulation environment. 

The model was applied to the North-East region of England, using data from the National Travel Survey 

(NTS; Department for Transport, 2021) which, at the moment of collecting the information, were 

available for the 2002–2020 period. 

 
1 We included hybrid electric vehicles (HEVs) in our analysis because they currently represent, for many users, a 

reasonable compromise between the more traditional ICE vehicle technology and the more challenging EVs. The 

differences between these two fuel types are highlighted when appropriate. 
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2. METHODOLOGY 

The model we propose is based on the following assumptions/modelling steps: 

• H1: Global behaviour emerges as a result of individual decision making and agent interaction. 

Since car ownership is typically a family decision, the decision unit (agent) is represented as a 

household that possesses a series of socioeconomic attributes, a specific geographic location, and a 

certain number of vehicles (which can be zero) with their own attributes. In addition, households 

store personal information about one of their inhabitants, defined as the lead of the household, 

including their age, gender, and educational level. It is also assumed that the lead of the household 

possesses attitudinal and affective evaluations of both the available fuel types and the transport 

needs of the households.  

• H2: Households (agents) interact within a social network. We build a social network to simulate 

the agents’ interactions in the simulation environment. The likelihood of two agents being linked 

depends on their socioeconomic attributes, the characteristics of their vehicles, and their geographic 

locations.  

H3: Households decide whether they need to buy an additional car or discard one of their current 

cars. We model these decisions using a DCM where the probability of changing the current level 

of car ownership is modelled as a function of socioeconomic individual and household attributes, 

along with significant life events such as residential relocations, employment switches, and changes 

in household size. We estimated the model using a longitudinal sample of 10,067 UK households 

sourced from eight waves of the Understanding Society Survey (University of Essex et al., 2020), 

with full results reported in Domarchi and Cherchi (2023a). According to this model structure, we 

implemented this decision in two successive steps. First, the household decides whether it needs to 

discard one of its cars or buy an additional one, with cars removed or added to the simulation 

accordingly. If no changes in car ownership levels are required, then vehicle holdings stay 

unchanged.  

 

H4: Households update their attitudinal and emotional appraisals by direct communication with 

other households.  

• We use the hot coherence (HOTCO) model (Thagard, 1989;2006) to address cognitive 

consistency in each household. Households in the ABM are mapped to respondents from a 

dedicated survey aimed to collect the information required to estimate the parameters of 

the HOTCO model. In the HOTCO model, the decision-making process is represented as a 

coherence network linking transport motives with decision outcomes. An iterative 

algorithm is run to obtain activations and valences that represent the attitudinal and 

emotional responses to each alternative. The data collection and modelling processes are 

reported in Domarchi et al. (2024b).  

 

In turn, the HOTCO model allows addressing direct communication between agents as a process of 

information exchange which results in updated HOTCO inputs that change at each time step t. The 

updated score 𝑠𝑑
(𝑡) for HOTCO input 𝑑 at time step 𝑡 is calculated as: 

 

 

𝑠𝑑
(𝑡) = 

−1 if  𝑠𝑑
(𝑡−1) < −(1 + ∆𝑠𝑑)  

+1 if  𝑠𝑑
(𝑡−1) > (1 − ∆𝑠𝑑) (1) 

𝑠𝑑
(𝑡−1) + ∆𝑠𝑑 in other case  

  

Where the ∆𝑠𝑑 values are the mean score changes per HOTCO input d. The 𝑠𝑑
(𝑡) are bounded to 

the [−1; +1] range, as the rest of the HOTCO inputs. This updating process ensures that the beliefs 

and emotional appraisals of each need and action are adjusted for both agents as a product of their 

information exchange. Once all inputs are set to their new values, each agent updates the resulting 

activations and valences for all the nodes in the connectionist network, using the HOTCO 

algorithm. The ∆𝑠𝑑 parameters were sourced from the results of a “before-and-after” experiment 
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where respondents to the dedicated survey were submitted to narrative messages about EVs. Full 

results of this experiment are available in Domarchi (2023)  

• H5: Households decide whether they require to replace one of the vehicles they currently own. 

Mathematically, this is a probabilistic model to determine if a vehicle will be replaced, as a function 

of its age and the current length of ownership.  

• H6: Households observe the current adoption rates in their network to evaluate their willingness 

to consider the innovative alternatives. An indirect communication process is carried out, whereby 

households evaluate their knowledge of the recent decisions of other households in their social 

network and use this information in their own choice. We model this stage using an adapted version 

of the willingness-to-consider (𝑊𝑡𝐶) parameter (Struben and Sterman, 2008). Assuming that choice 

is modelled using a LCCM structure, 𝑊𝑡𝐶 is a household- (𝑞) and alternative (𝑖)-specific parameter 

assumed to deflect the class-specific choice probabilities, reflecting alternative familiarity. For 

familiar and well-established technologies, 𝑊𝑡𝐶𝑖𝑞𝑡 = 1 . Conversely, if the household is 

completely unfamiliar with the technology, 𝑊𝑡𝐶𝑖𝑞𝑡 = 0. The intermediate case arises when the 

household has still not adopted the technology but at least one neighbour in the social network has. 

In this case, we model 𝑊𝑡𝐶𝑖𝑞𝑡 as a monotonously increasing function of the current (local) market 

share 𝑀𝑆𝑖𝑞𝑡 during time 𝑡, as suggested in Struben and Sterman (2008). We operationalise 

𝑊𝑡𝐶𝑖𝑞𝑡  as a random variable following a truncated Normal distribution with mean: 

 

𝑊𝑡𝐶𝑖𝑞𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

1 + exp (−𝜀 ∙ (𝑀𝑆𝑖𝑞𝑡 − 𝑤∗))
 

 
(2) 

 

Where 𝜀 and 𝑤∗are calibration parameters. In particular, 𝑤∗ represents the expected mean value 

of 𝑊𝑡𝐶 when adoption in the local network reaches 50%, and 𝜀 is the slope of the 𝑊𝑡𝐶 at that 

point. The resulting distribution requires to be bounded to the [0,1] interval consistent with the 

definition of 𝑊𝑡𝐶, and the standard deviation is defined as 
𝑊𝑡𝐶𝑖𝑞𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅

4
⁄ . Further details are provided 

in Domarchi (2023). 

• H7: Finally, households choose a specific vehicle (determined by a car segment and a vehicle type), 

as a function of vehicle attributes – e.g., purchase prices, operation costs, mechanic characteristics, 

and geometric dimensions –, socioeconomic and geographic attributes, external elements such as 

the fuelling/charging network or the effect of policy measures, and the outcome of the 

communication process. Mathematically, this decision is modelled using a LCCM that includes 

cognitive consistency (HOTCO) effects. The class-specific choice probabilities also include the 

𝑊𝑡𝐶𝑖𝑞𝑡 parameter from equation (2), using the following expression: 

𝑃𝑖𝑞𝑡|𝑠 =
𝑊𝑡𝐶𝑖𝑞𝑡 ∙ exp(∑ 𝜃𝑖𝑞𝑘𝑠𝑋𝑖𝑞𝑘𝑡𝑘 )

∑ 𝑊𝑡𝐶𝑗𝑞𝑡 ∙ exp(∑ 𝜃𝑖𝑞𝑘𝑠𝑋𝑖𝑞𝑘𝑡𝑘 )𝐴𝑗∈𝐴(𝑞)

 (3) 

 

Where 𝑋𝑖𝑞𝑘𝑡 are values for attribute k, household q, alternative i in time step t, and 𝜃𝑖𝑞𝑘𝑠 are 

parameters estimated for household q belonging to class s and associated with attribute k and 

alternative s. The 𝜃𝑖𝑞𝑘𝑠 parameters were estimated using data from the dedicated survey in H4. Full 

results are reported in Domarchi et al. (2024a). 

• H8: Households engage in this decision-making process over time. The process is simulated 

dynamically, with each iteration representing a time step. The main (socioeconomic) agent 

attributes and the configuration of the social network remain unaltered during the course of the 

simulation, while the vehicle attributes change over time. The decision-making process occurs 

iteratively over the simulation period, with households permanently reassessing their car holdings, 



5 

engaging in (direct and indirect) communication, deciding if their vehicles require replacement and 

defining their preferred alternative if this is the case. 

Figure 1 shows the scheme of the overall decision-making process as described so far. In this figure, 

diamond boxes represent behavioural steps framed as Yes/No type questions that the household must 

answer before continuing with the process. Rectangles, on the other hand, represent decisions that result 

in changes in household or vehicle attributes. The inputs and outputs of these modelling steps are inter-

related, and their combined result is a profile of vehicle purchases per fuel type for each simulation step 

(year). 

 

 

Figure 1. General overview of the model 

3. RESULTS AND DISCUSSION 

We calibrated our model using a base case scenario, built considering average market parameters for 

the 2021–2022 period (known at the time of calibration). During the calibration stage, we aimed to 

determine suitable values for the 𝜀 and 𝑤∗ parameters in equation (2), and the structure of the social 

network. We ran our model for several combinations of these parameters. We chose the parameters that 

minimised the square mean prediction error, evaluated as the difference between modelled and actual 

market shares per fuel type. We chose a grid of parameters whose combinations yielded mean square 

prediction errors of around 1–2%. 

 

For forecasting the 2021–2049 period, we defined a base case scenario and 10 policy scenarios. The 

base case scenario assumes an evolution of market parameters that is similar to the one observed in the 

previous years. We relaxed this assumption in the policy scenarios.  

 

 

 

H4. Direct communication 
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H3b: Buy an 
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H5: Replace a 

car? 

Car disposal 

Any additional 
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No 
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No 
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H4. Direct communication 
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H6. Indirect communication 

H7. Vehicle choice 

H8. Next time step 

No 

No 
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H1: Agent setup 
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… 

No 
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Agent 2 

H2: Network setup 
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The first two scenarios (1 and 2) assume that the ICE/HEV phase-out will not occur as originally 

planned. Scenario 1 assumes it will be postponed by five years, and Scenario 2 assumes it will be 

scrapped altogether (i.e., sales of new ICE/HEV cars will still be allowed).  Scenarios 3 and 4 were 

simulated to obtain lower bounds of the EV diffusion curve over time, as they assume unfavourable 

market conditions. Scenarios 5 to 9 are used to explore the more optimistic outlook in the EV diffusion 

curves. They assume policy measures including purchase subsidies (5), improvements in the EV 

charging network (6), petrol taxes and energy rebates (7), a combination of all these measures (8) 

Scenario (9) tests the combined effects of these optimistic assumptions and the negative outcome of the 

“no-phase out” scenario (2). Finally, Scenario 10 assumes that an aggressive advertisement campaign 

is conducted by the government during the first years of EV adoption (2021–2030), promoting the 

benefits and positive effects of owning and using an EV, with households responding according to our 

HOTCO experiment. 

 

Figure 2 and Figure 3 illustrate the evolution of the EV market in terms of sales and total number of 

cars during the simulation period in each scenario.  

 

 

Figure 2. ABM results – Evolution of EV sales by scenario 

 

Figure 3. ABM results – Evolution of EV fleet by scenario 
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Both pessimistic scenarios generate significantly lower shares for EVs over time, with the most extreme 

case (Scenario 4: Pessimistic – Combined) reaching a final share of 11.1%. The base case scenario 

performs similarly to the optimistic (green) scenarios in the final years of the simulation; however, the 

positive effects of increased adoption induced by policy measures imply that a significant level of 

decarbonisation in the car fleet can be reached earlier. The highest adoption rate is reached in Scenario 

10 (“Campaign”), which assumes a highly effective investment in advertisement, and a widespread 

positive reception to it. While not an entirely realistic outcome, it still shows that attitudinal shift might 

be a significant driver of EV uptake. 

 

It should be noted that not even the most optimistic scenarios evaluated with the model generate a 

situation where the fleet of EVs reaches 46% of the total number of cars in the study area by 2030. This 

is a concerning result, even if the share of EVs is higher than 97% in all the optimistic scenarios by 

2050, as the climate emergency is pressing, and a faster uptake is required earlier to reach the desired 

levels of fleet decarbonisation. More aggressive policy measures might be required to ensure that this 

objective is met. 

4. CONCLUSIONS 

We built an ABM to forecast EV adoption from a behavioural-based perspective, simultaneously 

addressing household decision-making and cognitive consistency, along with processes of 

communication between households in a social network. We evaluated several policy scenarios, 

simulating both favourable and unfavourable scenarios for EV diffusion in the England market. Our 

results confirm the need for combined policies to ensure that the personal car fleet decarbonisation 

follows the required patterns for the expected reduction in carbon emissions. The most effective 

approach to improve EV adoption is to combine measures directed at different dimensions of the 

problem. Purchase subsidies might be successful in certain contexts, but less contentious measures such 

as energy rebates, or relevant improvements to the EV charging network, can reach comparable results 

with lower risks of political or ethical concerns, and eventually lower amounts of investment.  One of 

the most important measures in this direction is the ending of the sales of new petrol and diesel cars and 

new HEVs, currently planned for 2030 and 2035, respectively. 

ACKNOWLEDGEMENTS 

This work was supported by a Leverhulme Trust Doctoral Scholarship in Behaviour Informatics and 

the multimodal study of behaviour (DS-2017-015), and by the Newcastle University Overseas 

Scholarship (NUORS). Part of this work was conducted while the first two authors were at Newcastle 

University, United Kingdom.  

REFERENCES 

Department for Transport (2021) 'National Travel Survey, 2002-2020 [data collection]'. 

Department for Transport (2024) Phasing out the sale of new petrol and diesel cars from 2030 and 

Support for the Zero Emission Vehicles. Available at: 

https://assets.publishing.service.gov.uk/media/676aae90be7b2c675de30a1f/phasing-out-the-sale-of-

new-petrol-and-diesel-cars-from-2030-and-support-for-the-zero-emission-transition.pdf (Accessed: 4 

January 2024). 

Domarchi, C. (2023) Integrated diffusion and choice models for innovative transport alternatives: An 

application to the electric vehicle market. PhD. Newcastle University. 



8 

Domarchi, C. and Cherchi, E. (2023a) 'Changes in car ownership due to life events: Insights from the 

UK Longitudinal Household Survey', 11th Symposium of the European Association for Research in 

Transportation. Zurich, Switzerland, 6-9 September. 

Domarchi, C. and Cherchi, E. (2023b) 'Electric vehicle forecasts: a review of models and methods 

including diffusion and substitution effects', Transport Reviews, 43(6), pp. 1118-1143. 

Domarchi, C., Cherchi, E. and Vuong, Q.C. (2024a) 'Cognitive consistency and preferences for 

alternative fuel vehicles: a latent class model', Transportation Research Part D: Transport and 

Environment (Submitted). 

Domarchi, C., Vuong, Q.C. and Cherchi, E. (2024b) 'The role of emotional coherence in electric 

vehicle purchasing decisions', Transportation Research Part F: Traffic Psychology and Behaviour, 

107, pp. 997–1014. 

Guerra, E. and Daziano, R.A. (2020) 'Electric vehicles and residential parking in an urban 

environment: Results from a stated preference experiment', Transportation Research Part D: 

Transport and Environment, 79, p. 102222. 

HM Government (2021) Transitioning to zero emission cars and vans: 2035 delivery plan. Available 

at: https://www.gov.uk/government/publications/transitioning-to-zero-emission-cars-and-vans-2035-

delivery-plan (Accessed: 10 April 2022). 

International Energy Agency (2024) Global EV Outlook 2024: Moving towards increased 

affordability. Paris, France. Available at: https://www.iea.org/reports/global-ev-outlook-2024 

(Accessed: 21 May 2024). 

Kangur, A., Jäger, W., Verbrugge, R. and Bockarjova, M. (2017) 'An agent-based model for diffusion 

of electric vehicles', Journal of Environmental Psychology, 52, pp. 166-182. 

Li, L., Wang, Z., Chen, L. and Wang, Z. (2020) 'Consumer preferences for battery electric vehicles: A 

choice experimental survey in China', Transportation Research Part D: Transport and Environment, 

78, p. 102185. 

Liang, X., Lu, T. and Yishake, G. (2022) 'How to promote residents' use of green space: An 

empirically grounded agent-based modeling approach', Urban Forestry & Urban Greening, 67, p. 

127435. 

Liao, F., Molin, E. and van Wee, B. (2017) 'Consumer preferences for electric vehicles: a literature 

review', Transport Reviews, 37(3), pp. 252-275. 

Mehdizadeh, M., Nordfjaern, T. and Klöckner, C.A. (2022) 'A systematic review of the agent-based 

modelling/simulation paradigm in mobility transition', Technological Forecasting and Social Change, 

184, p. 122011. 

Nikolic, I. and Kasmire, J. (2013) 'Theory', in van Dam, K.H., Nikolioc, I. and Lukszo, Z. (eds.) 

Agent-Based Modelling of Socio-Technical Systems. New York, US: Springer, pp. 11-71. 

Rogers, E.M. (2003) Diffusion of Innovations. 5th edn. New York, US: Free Press. 

Rommel, K. and Sagebiel, J. (2021) 'Are consumer preferences for attributes of alternative vehicles 

sufficiently accounted for in current policies?', Transportation Research Interdisciplinary 

Perspectives, 10, p. 100385. 

Struben, J. and Sterman, J.D. (2008) 'Transition challenges for alternative fuel vehicle and 

transportation systems', Environment and Planning B: Planning and Design, 35(6), pp. 1070-1097. 

Thagard, P. (1989) 'Explanatory coherence', Behavioral and Brain Sciences, 12, pp. 435-502. 

Thagard, P. (2006) Hot Thought: Mechanisms and applications of emotional contagion Cambridge, 

MA, US: The MIT Press. 



9 

University of Essex, Institute for Social and Economic Research, NatCen Social Research and Kantar 

Public (2020) 'Understanding Society: Waves 1-10, 2009-2019 and Harmonised BHPS: Waves 1-18, 

1991-2009 [data collection]'. 

Wicki, M., Brückmann, G., Quoss, F. and Bernauer, T. (2023) 'What do we really know about the 

acceptance of battery electric vehicles? – Turns out, not much', Transport Reviews, 43(1), pp. 62-87. 

Wolf, I., Schröder, T., Neumann, J. and de Haan, G. (2015) 'Changing minds about electric cars: An 

empirically grounded agent-based modeling approach', Technological Forecasting and Social 

Change, 94, pp. 269-285. 

Zhang, H. and Vorobeychik, Y. (2019) 'Empirically grounded agent-based models of innovation 

diffusion: a critical review', Artificial Intelligence Review, 52(1), pp. 707-741. 

 

 


