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Short summary

Accurately estimating traffic variables across unequipped portions of a network remains a signif-
icant challenge due to the limited amount of sensors-equipped links, such as loop detectors and
probe vehicles. A common approach is to apply uniform scaling, treating unequipped links as equiv-
alent to equipped ones, which leads to a strong bias in MFD estimation. Two main approaches
are proposed: (1) Hierarchical Network Scaling and (2) Variogram-based data imputation. The
hierarchical scaling method categorizes the network into several clusters according to spatial and
functional characteristics, applying tailored scaling factors to each category. The variogram-based
imputation leverages spatial correlations to estimate traffic variables for unequipped links, cap-
turing spatial dependencies in urban road networks. Validation results show that the hierarchical
scaling approach yields the most accurate estimates, demonstrating reliable performance with as
little as 5% uniform detector coverage, while the variogram-based method provides strong results
with over 10% detector coverage.
Keywords: Network scaling, Macroscopic fundamental diagrams, Spatial imputation, Loop de-
tectors, Equipped networks.

1 Introduction

The Macroscopic Fundamental Diagrams (MFDs) has emerged as a critical tool in network traffic
management, providing a relationship between aggregate traffic variables such as flow, density, and
speed across an entire urban road network (Daganzo & Geroliminis, 2008). This concept offers
valuable insights for network traffic control (Keyvan-Ekbatani et al., 2015; Ampountolas et al.,
2017), particularly in perimeter control strategies (Aboudolas & Geroliminis, 2013; Mariotte &
Leclercq, 2019; Jiang & Keyvan-Ekbatani, 2023), where traffic inflow and outflow are managed to
optimize network-wide performances. By monitoring traffic at a macroscopic level, the MFDs en-
able decision-makers to regulate traffic in real-time, improve congestion management, and enhance
the overall efficiency of urban transportation systems.
Despite its potential, estimating reliable MFDs for a city network requires extensive empirical
data. Loop detector device (LDD), the most commonly used data source for MFDs estimation,
collects information from fixed sensors embedded in road infrastructure (Buisson & Ladier, 2009;
Geroliminis & Sun, 2011a; Keyvan-Ekbatani et al., 2012; Saberi & Mahmassani, 2012; Aboudolas
& Geroliminis, 2013; Keyvan-Ekbatani et al., 2013; L. Ambühl et al., 2021; Lee et al., 2023;
Mousavizadeh & Keyvan-Ekbatani, 2024). However, LDD faces limitations, such as positional
biases in speed estimation (Leclercq et al., 2014; Maiti, 2024), and uneven distribution of sensors in
a network (Lee et al., 2023), leading to incomplete coverage. To address these limitations, floating-
car devices (FCD), or probe is often used alongside LDD to enhance spatial coverage, primarily
for improving spatial speed estimation (Geroliminis & Daganzo, 2008; Gayah & Daganzo, 2011;
Geroliminis & Sun, 2011b; Mahmassani et al., 2013; Tsubota et al., 2014; L. Ambühl & Menendez,
2016; Yang Beibei et al., 2016; Du et al., 2016; Saeedmanesh & Geroliminis, 2016; L. . Ambühl et
al., 2017; Dakic & Menendez, 2018; Mariotte, Leclercq, et al., 2020; Mariotte, Paipuri, & Leclercq,
2020). However, FCD has its own challenges, including the unknown and variable penetration rate
of vehicles equipped with GPS in time and space. Estimating network-wide traffic flows based on
the assumption of homogeneous FCD penetration introduces uncertainty in the flow estimation,
particularly when coverage is sparse (Leclercq et al., 2014; Shim et al., 2019; Fu et al., 2020).
The limitations of these data sources underscore a broader issue: the network-wide traffic data
used for MFD estimation is typically incomplete. LDD and FCD are often available only for
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certain links in the network, resulting in what is known as an ‘equipped network MFD’, an MFD
that only reflects the links where sensors or FCD are deployed (Mariotte, Leclercq, et al., 2020).
Consequently, this equipped MFD may not be representative of the entire network. This is critical
for simulation studies as the demand is usually given for the full region, and estimating capacity
and other variables on the equipped network only creates a mismatch with trips that could totally
or partially happen in the non-equipped network.
To scale the equipped network MFD to the full city network, previous studies have attempted
to partition the network into homogeneous areas and apply a scaling factor that adjusts for the
ratio between the total length of links in the network and the length of the equipped links, e.g.,
Mariotte, Leclercq, et al. (2020). While this approach can offer some level of approximation, it
suffers from significant limitations. The partitioning of the network based on equipped network
data can lead to erroneous estimations of homogeneous areas, as the unequipped links may exhibit
different traffic characteristics (Jiang et al., 2023; Jiang & Keyvan-Ekbatani, 2023; Saeedmanesh &
Geroliminis, 2016, 2017; Gu & Saberi, 2019; Johari et al., 2023). Furthermore, applying a uniform
scaling factor across areas with varying types of links, such as arterials and local roads, may lead
to inaccurate flow estimates.
There is a need for a more advanced approach to spatial scaling of the MFD. To overcome the
challenges associated with uniform scaling, a new methodology that accounts for the link hierar-
chy within a network is proposed. This method involves developing separate scaling factors for
different hierarchical levels of the network, such as major arterials, collectors, and local streets.
By accounting for the differences in traffic behavior at various link levels, this approach offers a
more accurate estimation of network flow variables, allowing for accurate scaling of MFD from
sensor-equipped portions of the network to the entire city.

2 Methodology

The proposed methodology estimates traffic variables for an entire network based on partially
sensor-equipped data using hierarchical network scaling and variogram-based imputation approaches.

Network Variables Estimation and Scaling Issues

Uniform Scaling or Baseline

Let’s assume a traffic network having links (i) of n numbers (|i| = n), with a different hierarchy
based on serviceability, defined as link class as t. Among all the links, some have loop detectors
(LDs) count as j. Therefore, the flow in the links of LDs can be presented as {qj | j ∈ i}. The
lengths of the links in the network are represented by li. The overall network flow (q̂N ) can be
expressed by total travel distance (TTD) as network ‘production’ by all vehicles over the time-space
region, shown as follows in (1):

q̂N =

∑n
i=1 TTDi∑n
i=1 li∆t

(1)

The TTD is the sum of equipped network TTD (TTDj,eq) and non-equipped network TTD
(TTDi/∈i,neq)

TTD =

n∑
i=1

TTDi =
∑

∀j∈{eq}

TTDj,eq +
∑

∀i∈{neq}

TTDi,neq (2)

The first term of (2) can be calculated from the LDs.∑
∀j∈{eq}

TTDj,eq =
∑

∀j∈{eq}

qj lj (3)

The second term of (2) can be directly estimated after the imputation method. Otherwise, we
know that the expectation relation in (4a) holds for all situations. Note that the covariance term
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in (4a) can be disregarded as it was proven negligible in all our data analyses.

E(qili) = E(qi)E(li) + Cov(qi, li) (4a)

1

p

∑
i∈{neq}

(qili) =

1

p

∑
i∈{neq}

qi

 1

p

∑
i∈{neq}

li (4b)

∑
i∈{neq}

(qili) = q̄neq
∑

i∈{neq}

li (4c)

Here, q̄neq is the mean flow in the non-equipped network, and p is the total number of non-equipped
links (|i /∈ j| = p). Also, assume m is the total number of equipped links (|j| = m) in the network
with mean flow estimated as q̄eq from LDs. If we assume the non-equipped network shares the
same average flow and covariance as the equipped, then we can calculate the second term of (2),
as (5). ∑

∀i∈{neq}

(qili) = q̄neq
∑

∀i∈{neq}

li (5a)

=

 1

m

∑
j∈{eq}

qj

 ∑
∀i∈{neq}

li (5b)

= q̄eq
∑

∀i∈{neq}

li (5c)

So, the TTD can be expressed as in (6).

TTD = q̄eq × (
∑

∀i∈{neq}

li +
∑

∀j∈{eq}

lj) (6a)

= q̄eq × lnet (6b)

Here lnet is the total network length, including equipped and non-equipped links. The assumption,
q̄neq = q̄eq forms the foundation of the uniform scaling factor, where all variables are scaled by the
factor of network length covered.
Unfortunately, this assumption is often invalid, and equipped links are not a randomly selected
subset of the full network. We propose a hierarchical scaling approach that will cluster the equipped
network into groups that more likely resemble parts of the non-equipped network.

Hierarchical Network Scaling

The general idea in the hierarchical network scaling method is that we want to approach q̄neq = q̄eq
at the cluster level. Similar to (5), we can use the q̄eq,t to estimate the q̄neq,t, where t represents
link clusters. One option is to use the network hierarchy to define the clusters. Thus, we propose
the following scaling method for the hierarchical network approach by disregarding covariance term
in (7). ∑

∀t

TTDeq,t =
∑
∀j,t

qj,tlj,t (7)

E(qj,tlj,t) = E(qj,t)E(lj,t) (8)

1

m

∑
∀t

m∑
j=1

qj,tlj,t =
∑
∀t

(
1

m

m∑
j=1

qj,t)
1

m

∑
∀t

m∑
j=1

lj,t (9)

∑
∀j,t

qj,tlj,t =
∑
∀t

(q̄eq,t)
∑
∀j,t

lj,t (10)
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Similarly, for non-equipped networks:∑
∀t

TTDneq,t =
∑

∀i∈{neq}

qi,tli,t (11)

E(qi,tli,t|∀i /∈ j, t) = E(qi,t|∀i /∈ j, t)E(li,t|∀i /∈ j, t) (12)∑
∀t

p∑
i=1

qi,tli,t =
∑
∀t

(q̄neq,t)
∑
∀t

p∑
i=1

li,t (13)∑
∀i/∈j,t

qi,tli,t =
∑
∀t

(q̄neq,t)
∑
∀i/∈j,t

li,t (14)

Assuming the mean flow for a non-equipped network is the same as an equipped network for a
unique hierarchy, i.e., (q̄neq,t = q̄eq,t). Therefore, by applying (10) to (14), we get the following
estimation of TTD for a non-equipped network.

∑
∀i/∈j,t

qi,tli,t =

∑
∀j,t qj,tlj,t∑
∀j,t lj,t

∑
∀i/∈j,t

li,t (15)

=
∑
∀j,t

qj,tlj,t

∑
∀i/∈j,t li,t∑
∀j,t lj,t

(16)

Thus, the total network flow can be estimated from the equipped network information as follows:

q̂ =

∑
∀t TTD∑
∀i,t li,t∆t

(17)

=

∑
∀t TTDeq +

∑
∀t TTDneq∑

∀i,t li,t∆t
(18)

=

∑
∀j,t qj,tlj,t + (

∑
∀j,t qj,tlj,t

∑
∀i/∈j,t li,t∑
∀j,t lj,t

)∑
∀i,t li,t∆t

(19)

Similarly, we can also derive the network average density from the equipped network. The network
average density can be expressed by total travel time (TTT) as the ‘accumulation’ spent by all
vehicles in the network over the time-space domain. Similar to the TTD in (2), we can estimate
TTT in the equipped network as TTTeq =

∑
∀j kj lj . Local densities at LD-level (kj) need to be

corrected since the LDs suffer from location-biased and systematic errors. This study corrected
LD-level density estimation as per the methods mentioned in Maiti (2024). Therefore, the total
network density can be formulated from the corrected LD in the equipped network as follows:

k̂ =

∑
∀t TTT∑

∀i,t li,t∆t
(20)

=

∑
∀t TTTeq +

∑
∀t TTTneq∑

∀i,t li,t∆t
(21)

=

∑
∀j,t kj,tlj,t + (

∑
∀j,t kj,tlj,t

∑
∀i/∈j,t li,t∑
∀j,t lj,t

)∑
∀i,t li,t∆t

(22)

The variables qj,t and kj,t represent flow and density in the equipped network of t link hierarchy,
estimated at the detector level on a link.

Spatial Imputation: Variogram

Instead of scaling observations from the equipped network to represent the non-equipped network,
an alternative approach is to impute flow and density values for all links and subsequently cal-
culate the full MFD. To achieve this, we propose using a spatial variogram-based method for the
imputation process.
Let the traffic flow data for certain links in a network be given as {(si, qi)}, where si = (xi, yi)
represents the geographical coordinates (latitude and longitude) of the i-th known link, and qi is
the observed traffic flow at that link. The task is to estimate traffic flow q(s0) at unknown locations
s0 by leveraging spatial interpolation techniques based on a variogram-based model.
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The variogram measures the spatial dependence of a random variable, in this case, traffic flow,
across a network. The variogram γ(h) represents how traffic flow differences are expected to change
with increasing distance (h) between two locations. Unlike the traditional variogram model’s spatial
distance, in this study, the distance between two locations is measured by the shortest path distance
along the road network. For any two points si and sj separated by distance h = ∥si − sj∥, the
variogram is defined as:

γ(h) =
1

2
E
[
(q(si)− q(sj))

2
]

(23)

Here, E denotes the expectation, and h is the shortest path distance between si and sj .
The variogram is often approximated from data using the empirical variogram:

γ(h) =
1

2N(h)

∑
si,sj :∥si−sj∥=h

(qi − qj)
2 (24)

where N(h) is the number of pairs of points separated by distance h. This empirical variogram
helps identify the spatial structure in the traffic flow data. The variogram γ(h) is typically modeled
using one of several functional forms (e.g., spherical, exponential, Gaussian) based on the empirical
semivariances derived from the data. For instance, the spherical variogram is expressed as:

γ(r) =

{
C0 + C

(
3r
2a − r3

2a3

)
, if r ≤ a

C0 + C, if r > a
(25)

where a is the range, C0 is the nugget, and C is the sill, serve as constants for the model.

Spatial Interpolation: Kriging System Setup

The predicted traffic flow q̂(s0) at location s0 is given by:

q̂(s0) = q̄(s0) + ϵ(s0) (26)

The deterministic component q̄(s) represents the mean traffic flow, and the stochastic component
ϵ(s) represents random fluctuations in traffic flow. The random component can be defined as
a weighted multiplication of the deviation of the observed traffic flow at si from the mean s0.
The kriging weights wi are applied to these deviations, meaning that locations closer to s0 (with
higher spatial correlation) will have a greater influence on the prediction. This spatially weighted
adjustment ensures that the predicted traffic flow at s0 not only considers the global mean q̄ but
also incorporates the local variations (the deviations from the mean) based on the observed traffic
flows at the nearby locations.

q̂(s0) = q̄ +

n∑
i=1

wi (q(si)− q̄) (27)

Since q̄ is assumed to be constant, the estimator simplifies to:

q̂(s0) =

n∑
i=1

wiq(si) + q̄

(
1−

n∑
i=1

wi

)
(28)

For an unbiased estimator, the weights wi must satisfy the constraint:

n∑
i=1

wi = 1 (29)

Therefore, the predicted traffic flow at s0 is given by:

q̂(s0) =

n∑
i=1

wiq(si) (30)

The expected value of the predicted traffic flow is equal to the expected value of the true traffic
flow:

E [q̂(s0)] = q̄ = E [q(s0)] (31)
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The kriging weights wi are determined by solving the kriging system of n + 1 equations for the
weights wi and Lagrange multiplier µ is:

γ11 γ12 . . . γ1n 1
γ21 γ22 . . . γ2n 1
...

...
. . .

...
...

γn1 γn2 . . . γnn 1
1 1 . . . 1 0




w1

w2

...
wn

µ

 =


γ10
γ20
...

γn0
1

 (32)

Where γij is the semivariance between known points si and sj , γi0 represents the semivariance
between si and s0.

3 Data

This section describes the empirical data used in this study, focusing on LDD collected under
varying levels of sensor deployment. Additionally, it outlines the link hierarchy classification,
which forms the basis for the hierarchical scaling methodology proposed in this study.

Data Description

The study focuses on the road network of downtown Athens, Greece. The data for this study was
collected from loop detectors over a weekday period from November 7th to 11th, 2022, covering a
24-hour time span each day.
The links in the road network were classified in two ways (see Figures 1). The first classification fol-
lows a three-hierarchy (3-H), where roads are categorized into three groups: Link-1, corresponding
to the most critical roads, and Link-3, the least important major roads. The second classification
follows a two-tier hierarchy (2-H), where the network is divided into two types: Link-1, represent-
ing the most important roads, and Link-2, which includes the remaining major roads. We can see
in Figure 2 that the average speed and flow in each group are significantly different, so using a
common flow average from the equipped network to estimate the average flow on the non-equipped
network leads to strong bias.

(a) 2-Link Hierarchies (b) 3-Link Hierarchies

Figure 1: Network fully equipped with LDD and features hierarchical links, including (a)
two types link, (b) three types link
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(a) Average flow (b) Average speed

(c) Average flow (d) Average speed

Figure 2: Comparison of average network flow ((a) two-hierarchy, (c) three-hierarchy) and
speed ((b) two-hierarchy, (d) three-hierarchy) for different network configurations.

The study focuses on a road network comprising 2,456 links, spanning various hierarchical levels
within a 150 km area. A fully equipped network is defined as one where every link is equipped
with at least one LD. However, only 142 of these links currently have LDs installed. Therefore,
the LDs percentage in the network is approximately 5.78%. To address this limitation, a partially
equipped network was constructed, utilizing the data from these 142 links to estimate MFDs for
validation purposes. For comparison, the fully equipped network was conceptualized as including
the 142 LDs distributed across their respective links, as illustrated in Figures 1 (a, b). To evaluate
our methodology, we also created partially equipped networks by randomly removing LDs from
various links equally from each hierarchy in both the 2-H and 3-H hierarchical networks. Figure 3
illustrates the distribution of LDs in these partially equipped networks.
In this study, the proposed approach was validated using two distinct network types: the 2-H
network, the 3-H network, and a baseline non-hierarchical network for comparison.

4 Results

Comparison of proposed methods

The results presented in Figures 4, along with the RMSE values in Table 1, provide a detailed
comparison of the proposed hierarchical network scaling method, the variogram-based approach
and the baseline non-hierarchical network scaling. The scatter plots in Figure 4 further illustrate
these trends, showing the spread of estimated flow values relative to actual flow values from a
fully equipped network. As LD coverage decreases, the spread around the ideal x = y line widens,
particularly for the non-hierarchical method, which exhibits greater deviations from actual values.
Conversely, the 3-Hierarchy and variogram approaches demonstrate tighter clustering around the
ideal line, especially at lower LD coverages, reaffirming their superior accuracy under moderate to
high LD densities.
These results underscore the robustness of hierarchical network scaling, particularly in sparse
LD conditions where unstructured methods like the Variogram may falter. The 3-H method,
in particular, shows resilience across all coverage levels, while the Variogram method performs
strongly at 10% and higher LD coverage, demonstrating its potential for accurate network-wide
estimations when sufficient spatial data is available. The baseline approach, applied under the
lower usual case of 5% LD coverage, yields a network-average flow estimation with an RMSE of
234 veh/h. This value is notably four times higher than the error achieved using the proposed
three-level hierarchical (3-H) network scaling method. These findings underscore the importance
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(a) 30% LD of Figure 1 network (b) 20% LD of Figure 1 network

(c) 10% LD of Figure 1 network (d) 5% LD of Figure 1 network

Figure 3: Partially loop detectors equipped networks (a) 30% LD equipped network,
(b) 20% LD equipped network, (c) 10% LD equipped network, and (d) 5 % LD equipped
network

of adopting a hierarchical network approach to improve the accuracy of traffic variable estimation
at the network level.
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Figure 4: Comparison of actual network flow based on fully equipped network information
(100% LD) with estimated flow derived from a partially equipped network. The x-axis
represents the actual flow, while the y-axis denotes the estimated flow. From left to right,
the subfigures illustrate comparisons for 5%, 10%, 20%, and 30% LD.
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Table 1: Comparison of root mean square error (RMSE) of network flow, estimated using
different network scaling methods
Day Network 3-H 2-H Non-hierarchy Variogram

(% LD)

day1

30 12 30 24 12
20 12 85 128 17
10 26 90 158 43
5 65 110 226 -

day2

30 13 29 20 15
20 14 83 127 29
10 26 87 148 45
5 53 108 232 -

day3

30 25 24 20 42
20 27 70 133 27
10 28 83 142 42
5 51 120 260 -

day4

30 12 37 17 25
20 13 94 119 15
10 31 98 144 39
5 64 117 224 -

day5

30 13 42 16 31
20 16 94 110 34
10 35 95 145 39
5 48 115 229 -
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Comparing MFDs

This section demonstrates network MFDs estimated from the partially equipped network using the
proposed scaling methodologies and compares them with the actual MFDs from the fully equipped
network. In section 2.1, we proposed the network flow (q̂) and density (k̂) using the hierarchical
scaling method, and section 2.2 described q̂ estimation using the variogram. Similarly, we can
estimate k̂ using variogram methods by estimating detector-level density.
The estimated MFDs derived from the proposed methodologies across varying LD coverage per-
centages demonstrate clear differences in accuracy among the methods employed, as summarized
in Figure 5 and Table 2. The 5% LD scenario represents the most challenging condition for MFD
estimation due to sparse detector data. Among the methods, the three-hierarchy (3-H) statistical
scaling achieves the lowest RMSE of 48.9 veh/h, significantly outperforming the two-hierarchy (2-
H) scaling (51.8 veh/h) and the non-hierarchical approach (175.5 veh/h). The high coefficient of
determination (R2 = 0.97) for the 3-H method further highlights its robustness in low-data scenar-
ios, maintaining strong alignment with the actual MFD. For 10% LD, the 3-H scaling method again
delivers superior results with an RMSE of 45.3 veh/h, slightly better than the 2-H method (45.7
veh/h), variogram (55.2 veh/h), and markedly better than the non-hierarchical approach (137.6
veh/h). At 20% LD, the differences between the hierarchical methods narrow further, with 3-H
achieving 36.5 veh/h RMSE compared to 37.3 veh/h for 2-H. Both methods significantly outper-
form the non-hierarchical method (133.5 veh/h), demonstrating the effectiveness of incorporating
spatial structure in flow estimation. At the highest detector coverage of 30%, all methods perform
well due to the availability of more extensive data.
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(a) Statistical scaling in non-hierarchical network

(b) Statistical scaling in two-hierarchical network

(c) Statistical scaling in three-hierarchical network

(d) Variogram scaling in non-hierarchical network

Figure 5: Comparison of estimated MFDs from partially equipped networks: (a, b, c)
represent 5%, 10%, 20%, and 30% LD from left to right, and (d) shows 10%, 20%, and
30% LD from left to right, compared with the actual MFD derived from a fully equipped
(100% LD) network.
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Table 2: Comparison of estimated and actual MFDs
Method Network Types % LD RMSE (veh/h) R2

Statistical

Non-hierarchy

30 39.9 0.98
20 133.5 0.79
10 137.6 0.78
5 175.5 0.64

Three-hierarchy

30 35.9 0.98
20 36.5 0.98
10 45.3 0.97
5 48.9 0.97

Two-hierarchy

30 37.1 0.98
20 37.3 0.98
10 45.7 0.97
5 51.8 0.96

Variogram Non-hierarchy
30 51.5 0.97
20 54.6 0.96
10 55.2 0.96

Using the hierarchical network clustering methods, we estimate the full network MFD, as illustrated
in Figure 6, and compare these results with the baseline method. It is evident from the figure
that the baseline method underestimates the MFD, particularly in the critical density regime.
However, in the free-flow regime, both approaches yield comparable results. Recalling the network
LD coverage as 5.68%, we can refer to the MFDs in Figure 5 (a) for 5% LD; the same pattern is
observed here.

Figure 6: Comparing the estimated MFD using a hierarchical network cluster with three
hierarchies to the baseline non-hierarchical method for the entire network consisting of
2456 links.
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5 Conclusion

This study presents a novel methodology for estimating network-wide traffic characteristics in par-
tially sensor-equipped urban networks. By integrating hierarchical network scaling and geospatial
imputation techniques, the framework provides accurate estimations of MFDs, even in networks
with sparse detector coverage. The results underscore the critical role of hierarchical scaling in
improving network traffic variables and MFD estimation accuracy, particularly under sparse data
conditions. The 3-H method consistently outperforms (lowest RMSE and highest R2 values) the
2-H and variogram approaches across all LD levels, with its advantage most pronounced at low
LD coverage (5% and 10%). This is likely due to the additional spatial structure incorporated in
the hierarchical scaling, which allows it to better capture localized variations in flow and density.
Interestingly, the variogram approach demonstrates competitive performance for LD coverage lev-
els of 10% or more with small fluctuations in high flow regimes, but it was incompetent at lower
(5%) LD due to insufficient data for spatial imputation. This limitation highlights the trade-offs
between different methods in terms of data requirements and estimation capabilities. Therefore,
this study bridges the gap between partial sensor data and full-network traffic estimation for cities
with limited sensor coverage. Overall, the findings emphasize the importance of leveraging network
hierarchical frameworks for MFD estimation, particularly in scenarios where data availability is
limited.
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