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Short summary

Transportation network design, or the problem of optimizing infrastructure for a societal goal,
subject to individual travelers optimizing their behavior for their own preferences arises frequently
in many contexts. However, it is also an NP-hard problem due to the leader-follower or bi-level
structure involving a follower objective that is different from yet significantly affects the leader
objective. Creating exact algorithms has been particularly difficult for the continuous network
design problem (CNDP), in which leader variables are continuous, because of the challenges in
solving a mathematical program with explicit constraints for follower optimality. We present
an exact algorithm for CNDP based on using the high-point relaxation (system optimal CNDP,
or CNDP without the user equilibrium constraint) to find lower bounds and solving the traffic
assignment follower problem to find upper bounds on the optimal solution. To solve the high-
point relaxation faster, we outer-approximate the objective and value function cuts and use column
generation to obtain a sequence of linear programs that can be solved relatively quickly. Compared
to prior work on exact methods for CNDP, we can find exact solutions for the same small test
networks in much less time, or solve CNDP on much larger networks than have been solved in the
literature.

Keywords: continuous network design problem; outer approximation; value function cuts; traffic
assignment; user equilibrium

1 Introduction

The transportation network design problem (NDP) (Farahani et al., 2013) is the problem of de-
ciding where to improve road network infrastructure so as to optimize some societal goal such as
minimizing traffic congestion. The difficulty in solving NDP comes from the fact that the effects
of new infrastructure depend on drivers’ behavior, and drivers usually behave according to their
own preferences such as minimizing their individual travel times. We focus on the continuous NDP
(CNDP), in which design variables can take on continuous values.

Problem definition

The standard CNDP is defined as follows. Consider a traffic network G = (N ,A) with nodes N
and links A. The trips from r to s is drs. Some (possibly all) links can be modified by adding
extra capacity. The problem is to decide ya, the extra capacity added to link a, so as to minimize
total congestion. We assume that link variables ya for a ∈ A are lower-bounded by 0 and upper-
bounded by ya. If ya = 0, then we say that the capacity of link a is fixed. Each link a has a travel

1



time function ta(xa, ya) that indicates the travel time on a as a function of link flow xa and added
capacity ya. For example, the Bureau of Public Roads (BPR) function is

ta(xa, ya) = tffa

(
1 + αa

(
xa

Ca + ya

)βa
)

(1)

We make the following assumptions:

1. Drivers behave according to Wardop’s user equilibrium principle (Wardrop, 1952)

2. The cost of adding capacity is assumed to be a convex function ga(ya).

3. xata(xa, ya),
∫ xa

0
ta(ω, ya)dω, and

∫ xa

0
ta(ω, ya)dω −

∫ xf
a

0
ta(ω, ya)dω are convex. This holds

for the BPR travel time function.

For a fixed y, the follower problem is user equilibrium and can be written as

TAP(y) = argmin
x

B(x,y) =
∑
a∈A

∫ xa

0

ta(ω, ya)dω (2a)

s.t. xa =
∑
π∈Π

δπah
π ∀a ∈ A (2b)∑

π∈Πrs

hπ = drs ∀(r, s) ∈ N 2 (2c)

hπ ≥ 0 ∀π ∈ Π (2d)

where π is a path, Πrs is the set of paths from r to s, and Π =
⋃

(r,s)∈N 2 Πrs.

The continuous network design problem (CNDP) is

CNDP : min Z(x,y) =
∑
a∈A

(xata(xa, ya) + ga(ya)) (3a)

s.t. 0 ≤ ya ≤ ya ∀a ∈ A (3b)
x ∈ TAP(y) (3c)

which is a bi-level optimization problem due to Constraint (3c) which requires that user equilib-
rium conditions hold and represents a y-parameterized traffic assignment problem. Due to the
bi-level structure, CNDP is non-convex even if the leader objective and follower objective are
convex, and NP-hard to solve (Gairing et al., 2017). Therefore, finding exact solutions is compu-
tationally difficult, and researchers who encounter CNDP often use metaheuristics such as genetic
algorithms (Nayeem et al., 2014; Arbex & da Cunha, 2015; Levin et al., 2020). Finding exact
solutions is beneficial for system performance. Yet, existing exact approaches for the CNDP do
not scale well and struggle to compute globally optimal solutions even for problem instances based
on small test networks such as Sioux Falls (Du & Wang, 2016; Li et al., 2012).

Our contributions

Consider the limitations of two recent approaches to CNDP.

• Du & Wang (2016) used complementary slackness to ensure bi-level feasibility, and used
geometric programming to handle its nonlinearity. However, that approach introduces diffi-
culties with the linear constraints, and requires enumerating all paths.

• Li et al. (2012) does not require path enumeration, but instead solve a sequence of concave
minimization problems. Each subproblem is therefore NP-hard. The reported computation
times from these recent methods on the 6 node, 16 link network of Harker & Friesz (1984)
range from 1.5 minutes using D. Z. Wang & Lo (2010)’s piecewise approximation to 12hrs
from Li et al. (2012).
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These prior methods involve complex subproblems that are difficult to solve, and do not take
advantage of the relatively simple subproblems that CNDP is related to. First, for any fixed leader
variable, the follower problem of traffic assignment can be solved efficiently on large networks
using dedicated algorithms (e.g. Dial, 2006; Bar-Gera, 2010). Second, in many use cases (e.g. the
Bureau of Public Roads travel time function), the high-point relaxation of CNDP has a convex
objective and linear constraints. Moreover, value function cuts using the Beckmann et al. (1956)
objective for traffic assignment are convex and sufficient to enforce follower optimality. Using outer
approximation (Duran & Grossmann, 1986), these convex nonlinear functions can be replaced
with a set of linear constraints, yielding a linear program that can be solved quickly even on
large networks using column generation. Although prior work made use of outer approximation,
their reformulations involved a concave minimization problem (Li et al., 2012) or a MILP for
approximating a nonlinear function (Liu & Wang, 2015), limiting their efficiency.

The contributions of this study are as follows: we present a new algorithm for CNDP based on
adding value function cuts to the high-point relaxation, and using outer approximation to form
a linear approximation of this problem. We achieve global optimality by sequentially obtaining
tighter valid upper and lower bounds. As this algorithm involves solving linear programs and
traffic assignment, it is far more efficient than existing methods, which we demonstrate on both
the Harker & Friesz (1984) network used in prior CNDP work and on much larger networks.

2 Methodology

Our algorithm builds on elements of the literature from both DNDP and CNDP literature. We
focus on computing a sequence of progressively tighter upper and lower bounds, like several exact
algorithms for DNDP (Leblanc, 1975; Farvaresh & Sepehri, 2013). Upper bounds are computed
from traffic assignment, whereas lower bounds are found by solving the high-point relaxation while
adding value function constraints like in S. Wang et al. (2013) to move towards follower optimality.

The structure of our proposed algorithm is as follows: SO-CNDP computes an objective Z⋆
lb that

is a global lower-bound to the optimal objective value Z⋆ because the feasible space has been
relaxed. Because SO-CNDP has a convex objective and linear constraints, it is far easier to solve.
Meanwhile, for any fixed y, we can obtain an upper bound on the optimal objective by solving
xf = TAP(y) and computing Z(xf ,y). It is an upper bound because the fixed y may not be optimal,
but if y satisfies constraint (3b) then the point (xf ,y) is a feasible solution to CNDP. If we find a
solution (xl,yl) such that

Z(TAP(yl),yl)− Z⋆
lb ≤ ϵ (4)

where Z⋆
lb is an optimal solution to the high-point relaxation SO-CNDP, then the solution yl

must be within ϵ of the globally optimal solution and we can terminate. Of course, Z⋆
lb from SO-

CNDP alone will have a substantial gap from Z(TAP(yl),yl) due to the lack of the user equilibrium
constraint. Therefore, we need to introduce additional value function cuts on SO-CNDP to improve
its accuracy while maintaining its solution as a lower bound to the global optimum of CNDP.

Value function cuts

We start by considering the high-point relaxation of CNDP which is obtained by relaxing Con-
straint (3c). This relaxation represents a system optimal CNDP (SO-CNDP):
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SO-CNDP : Zlb = min Z(x,y) =
∑
a∈A

xata(xa, ya) + ga(ya) (5a)

s.t. 0 ≤ ya ≤ ya ∀a ∈ A (5b)

xa =
∑
π∈Π

δπah
π ∀a ∈ A (5c)∑

π∈Πrs

hπ = drs ∀(r, s) ∈ Z2 (5d)

hπ ≥ 0 ∀π ∈ Π (5e)

We reformulate problem (5) with value function cuts to obtain the original CNDP:

Proposition 1. Consider the high-point relaxation of SO-CNDP augmented with value function
cuts:

min Z(x,y) =
∑
a∈A

(xata(xa, ya) + ga(ya)) (6a)

s.t. 0 ≤ ya ≤ ya ∀a ∈ A (6b)

xa =
∑
π∈Π

δπah
π ∀a ∈ A (6c)∑

π∈Πrs

hπ = drs ∀(r, s) ∈ Z2 (6d)

hπ ≥ 0 ∀π ∈ Π (6e)
B(x,y) ≤ B(x′,y) ∀x′ ∈ X (6f)

where constraints (6f) are the value function cuts. Then problem (6) is equivalent to problem (3).

Proof. We show equality of the feasible regions, which is sufficient because the objective functions
are identical. Let (x,y) be a point that is feasible for problem (6) with x ∈ X . Because it satisfies
constraint (6f) it minimizes B(x,y) over link flows x, which makes it bi-level feasible for CNDP.
Conversely, consider a point (x,y) that is feasible for problem (3). Then x ∈ X and B(x,y) is
minimized by definition of TAP, so it satisfies constraint (6f) and is feasible for problem (6).

The purpose of the value function cuts is to cut out bi-level infeasible solution from SO-CNDP.
Since there is an infinite number of value function cuts (6f), we develop a cutting plane algorithm
that iteratively adds such cuts to SO-DNDP. To achieve convergence, we need to show that adding
cut (7) excludes ranges of x and y values, so that we are sequentially cutting a non-finite subset of
the feasible region of SO-CNDP. We first verify correctness: after adding cut (7), SO-CNDP still
achieves a lower bound on CNDP.

Proposition 2. After adding cut (7) to problem (5) for a specific xf ∈ X , the optimal solution to
problem (5), Z⋆

lb, is a lower bound on the optimal function value (OFV) of CNDP.

Proof. We obtain a lower bound because we are adding a subset of the value function cuts in
problem (6) that creates an equivalent problem to CNDP.

Now, we want to show that cut (7) is effective at removing a non-finite subset of the feasible region
of x that would be bi-level infeasible.

Proposition 3. Suppose SO-CNDP gives a solution (xl,yl) where xl ̸= argminx B(x,yl) (i.e. xl

is not bi-level feasible). Let xf = TAP(yl). Then adding cut

B(x,y) ≤ B
(
xf ,y

)
(7)
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excludes (xl,yl) from the feasible region of problem (5). Furthermore, cut (7) excludes an additional
range of x values from feasibility in problem (5).

Proof. Let xf = argminx B(x,yl) (which is unique due to convexity of TAP) and xl ̸= xf . Then
B(xl,yl) > B(xf ,yl) and adding the cut B(x,y) ≤ B(xf ,y) to SO-CNDP removes (xl,yl) from
the feasible region of problem (5). It also removes any other x ̸= TAP(y) from feasibility of problem
(5).

Because xf is feasible for any given y, once we have some feasible xf ∈ X , constraint (7) is
potentially useful for all y. Hence the right hand side of B(xf ,y) holds for all y. Furthermore, if
we consider some y′ ̸= y and the best corresponding x′ from problem (5) defined as

x′ ∈ argmin
x∈X :B(x,y′)≤B(xf ,y)

Z(x,y′) (8)

cut (7) can also exclude some y′ where the only feasible x (after the value function cuts) have a
suboptimal value of Z(x,y′).

If we sequentially add cuts (7) based on different (xf ,yl) to problem (5), we will eventually cut
away the values of X that are feasible for problem (5) but infeasible for problem (3). Furthermore,
we always obtain a lower bound on CNDP by Proposition 2, so the OFV of problem (5) gradually
augmented with value function cuts forms an increasing sequence of lower bounds.

Let nvf be the number of xf points used in value function cuts, labeled xf(i) for i ∈ 1 . . . nvf . The
set of xf(i) points will be built sequentially over iterations. After combining problem (5) with
value function cuts, we obtain the partially augmented problem

Zlb = min Z(x,y) =
∑
a∈A

xata(xa, ya) + ga(ya) (9a)

s.t. 0 ≤ ya ≤ ya ∀a ∈ A (9b)

xa =
∑
π∈Π

δπah
π ∀a ∈ A (9c)∑

π∈Πrs

hπ = drs ∀(r, s) ∈ Z2 (9d)

hπ ≥ 0 ∀π ∈ Π (9e)

B(x,y) ≤ B
(
xf(i),y

)
∀i ∈ 1 . . . nvf (9f)

which we will solve iteratively until convergence with the best upper bound.

However, constraint (7) is typically nonlinear in y. For example, for the BPR function (1), y
non-linearly changes the denominator. Therefore it is more computationally expensive to solve
problem (5) with it. Instead, we use outer approximation to convert problem (5) into a sequence
of linear programs.

Outer approximation of total system travel time

Observe that both Z(x,y) and its outer approximation are separable by link. Therefore, instead
of using the entire (x̂, ŷ) for the outer approximation, we can instead develop a link-based outer
approximation for the individual objective function components for each link a. Let ζa be the
variable used to represent the contribution of link a in the objective function of CNDP via outer
approximation. Replacing Z(x,y) with approximation variable ζa, we obtain

Z (x̂, ŷ) +∇xZ (x̂, ŷ) · (x− x̂) +∇yZ (x̂, ŷ) · (y − ŷ) ≤
∑
a∈A

ζa (10)
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as the outer approximation cut with the objective of minimizing
∑

a∈A ζa. This cut can be de-
composed into link-based cuts of the form:

ζa ≥ x̂ata (x̂a, ŷa) + ga (ŷa) + (xa − x̂a)

[
x̂a

dt (x̂a, ŷa)

dxa
+ ta (x̂a, ŷa)

]
+ (ya − ŷa)

[
x̂a

dt (x̂a, ŷa)

dya
+

dg (ŷa)

dya

]
(11)

In effect, for every (x̂, ŷ) point used to generate an outer approximation cut, we instead get the
equivalent of |A| outer approximation cuts for Z(x,y), multiplicatively. If we have n points for
generating outer approximation cuts, (x̂(i), ŷ(i)) for i = 1 . . . n, then we actually end up with |A|n
outer approximation cuts because every combination of points, e.g. (x̂1(1), x̂2(2), . . .) is giving a
cut on ζa. Therefore, the outer approximation process will converge much faster using link-based
outer approximation cuts than a single cut on the total objective Z(x,y).

Outer approximation of value function cuts

We rewrite constraint (7) as

∆B(x,y,xf) = B(x,y)−B
(
xf ,y

)
≤ 0 (12)

which we assume to be convex (it is convex for the BPR function). Its outer approximation is

B(xl,yl)−B(xf ,yl) +
[
∇xB(xl,yl)

]
·
(
x− xl

)
+
[
∇yB(xl,yl)−B

(
xf ,yl

)]
·
(
y − yl

)
≤ 0 (13)

To obtain a tighter approximation, observe that B(x,y) is separable by link. Let ηa be the link-
specific outer approximation of B(x,y) for link a, i.e.

ηa ≥
∫ xl

a

0

ta
(
ω,yl

a

)
dω +

(
xa − xl

a

)
ta
(
xl
a, y

l
a

)
+
(
ya − yla

) ∫ xl
a

0

dta
(
ω, yla

)
dya

dω (14)

for all (xl,yl) points. Then we can obtain a partially link-separated outer approximation of cut
(12) using ηa:

∑
a∈A

ηa −B
(
xf ,yl

)
−
∑
a∈A

(
ya − yla

) ∫ xf
a

0

∂ta
(
ω, yla

)
∂ya

dω ≤ 0 (15)

To summarize, we have approximated cut (12) with the combination of cuts (14) and (15). This
separation makes the approximation stronger. Every iteration, we obtain a new (xl,yl) point to
make a tighter approximation of B(x,y) as

∑
a∈A ηa in ∆B ≤ 0.

Cutting-plane algorithm for the CNDP

Let nvf be the number of (xf ,yl) points used to create the outer approximation for ∆B(x,y,xf),
and let nB be the number of (xl,yl) points used to create the outer approximation of the Beckmann
function B(x,y). It is possible to have nB > nvf , meaning there are more outer approximation
cuts to tighten ηa than there are value function cuts using ηa. Also let nZ be the number of (xl,yl)
points used to create the outer approximation of the leader objective. The final linear program to
be iteratively solved is as follows:
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Algorithm 1: Cutting-plane algorithm for CNDP
1 Set LB ← 0, UB ←∞, i← 1, nZ ← 0, nvf ← 0, nB ← 0.
2 while UB − LB > ϵ do
3 Solve SO-CNDP problem (16) to obtain Zlb(i), xl(i), yl(i). Set LB ← Zlb(i).
4 for a ∈ A do
5 Add cut (16b) on ζa using (xla(i), y

l
a(i)).

6 Add cut (16h) on ηa using (xla(i), y
l
a(i)).

7 Set nB ← nB + 1, nZ ← nZ + 1.
8 if yl(i) ̸= yl(j) for all j ∈ {1 . . . i− 1} then
9 Solve TAP

(
yl(i)

)
to obtain xf(i). Set UB ← min

{
UB,Z

(
xf ,yl

)}
.

10 Add outer approximation cut (16g) of ∆B using (xf(i),yl(i)). Set
nvf ← nvf + 1.

11 Set i← i+ 1.

Zlb = min
∑
a∈A

ζa (16a)

s.t. ζa ≥ xl
a(i)ta

(
xl
a(i), y

l
a(i)

)
+ ga

(
yl
a(i)

)
+

(
xa − xl

a(i)
)[

xl
a(i)

dt
(
xl
a(i), y

l
a(i)

)
dxa

+ ta
(
xl
a(i), y

l
a(i)

)]

+
(
ya − yl

a(i)
)[

xl
a(i)

dt
(
xl
a(i), y

l
a(i)

)
dya

+
dg

(
yl
a(i)

)
dya

]
∀a ∈ A,∀i ∈ 1 . . . nZ

(16b)

0 ≤ ya ≤ ya ∀a ∈ A (16c)

xa =
∑
π∈Π

δπah
π ∀a ∈ A

(16d)∑
π∈Πrs

hπ = drs ∀(r, s) ∈ Z2 (16e)

hπ ≥ 0 ∀π ∈ Π (16f)∑
a∈A

ηa −B(xf(i),yl(i))

−
∑
a∈A

(
ya − yl

a(i)
)∫ xf

a(i)

0

∂ta
(
ω, yl

a(i)
)

∂ya
dω ≤ 0 ∀i ∈ 1 . . . nvf

(16g)

ηa ≥
∫ xl

a

0

ta
(
ω, yl

a(i)
)
dω

+
(
xa − xl

a(i)
)
ta

(
xl
a(i), y

l
a(i)

)
+

(
ya − yl

a(i)
)∫ xl

a(i)

0

dta
(
ω, yl

a(i)
)

dya
dω ∀a ∈ A, ∀i ∈ 1 . . . nB

(16h)

To solve CNDP, we propose a cutting-plane algorithm that repeatedly solves LP (16) and gradually
adds outer approximation cuts. The pseudo-code of our approach is summarized in Algorithm 1.
To avoid path enumeration, we adoption the column generation scheme introduced by Rey & Levin
(2024).
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3 Numerical results

The main benefit the outer approximation-based cutting-plane algorithm has over published work
is the potential to solve CNDP on larger networks than the 6-node, 16-link Harker & Friesz
(1984) test network, which was the largest network that other algorithms could be demonstrated
on (D. Z. Wang & Lo, 2010; Li et al., 2012; Du & Wang, 2016). We report exact solutions on
networks with up to 914 links, which has not previously been achieved in the literature on CNDP.

To demonstrate that our method robustly solves CNDP for these networks, we consider different
instances, shown in the “Inst.” column of Tables 1 and 2, with different randomly generated costs
and different links where ya ≥ 0 is permitted. We vary the number of ya variables that are
permitted to be non-zero. As the number of non-zero ya variables increases, the congestion in
the network generally decreases, so instances where ya > 0 is permitted for all links become less
interesting. For example, compare the total system travel times in Table 1 for instances on the
same network with different numbers of non-zero ya variables.

Costs per capacity increase are randomly generated because they are typically not published with
standard traffic assignment network data unless they are being used for CNDP. ya was limited to
Ca/2, for a maximum of a 50% increase in link capacity. (The average value of the link cost is
reported in the “avg. cost” column in units of $ per additional veh/hr capacity. We also varied the
number of ya variables that could be non-negative, shown in the “ya vars” column of Tables 1 and
2, the average link cost, and the demand.

For each instance, we report the objective, gap at termination, and total system travel time (which
excludes the cost of link capacity additions from the objective). The difference between the objec-
tive Z(x,y) and total system travel time indicates when y ≥ 0 in the optimal solution. We also
show the total system travel time with 0 additional capacity for comparison. The objective and
total system travel time are from the best upper bound, i.e. the best TAP solution for the y ob-
tained from problem (16), so they are guaranteed to be follower-optimal for CNDP. We terminated
when the gap was below 1%. We also report the total computation time (“Tot. time”), time spent
on solving the traffic assignment subproblem (“TAP time”), and the number of iterations (“iter.”)
of Algorithm 1 before termination.

4 Conclusions

CNDP has been extensively studied in the literature, but existing methods for finding exact solu-
tions to CNDP require solving difficult problems creating large computation times for small test
networks. Consequently, there was a potential gap to create a method that relies on relatively sim-
ple subproblems — linear programs and traffic assignment. Using value function cuts and outer
approximation, we created one such algorithm that sequentially solves a linear program and traffic
assignment. Convergence occurs because when x from the high-point relaxation SO-CNDP is not
follower-optimal, we add a value function cut based on the follower objective value to exclude x
and other points like it from the SO-CNDP mathematical program. Because such cuts are valid
at follower optimality, the revised SO-CNDP mathematical program still finds a lower bound to
CNDP, but that lower bound becomes progressively tighter. We used outer approximation to re-
formulate the nonlinear leader objective and value function cuts into a sequence of linear programs,
which is valid when these nonlinear functions are convex (which they are for the Bureau of Public
Roads travel time function). Separating the outer approximation by link created a much stronger
outer approximation for faster convergence. Column generation was used to more quickly solve
the network-based linear programming subproblem.

Due to the computational complexity of their algorithms, prior work on finding exact solutions to
CNDP required large computation times to solve CNDP on the small Harker & Friesz (1984) test
network with 6 nodes and 16 links. In contrast, we were able to obtain solutions within 1% of
global optimality on networks with up to 416 nodes and 914 links in reasonable computation times.
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The ability to solve CNDP on much larger networks could be useful for a variety of research and
practical problems. Furthermore, we believe that our algorithm is significantly easier to implement
than methods from prior work as it relies on linear programs and traffic assignment.
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Table 1: Demonstration of outer approximation algorithm with column generation on larger networks
Network Non-zero ya vars Inst. Avg. cost Obj. gap TSTT Tot. time TAP time iter.

Sioux Falls 10 1 2.39e-01 6959.2 0.94% 6950.4 4.67s 3.77s 9
2 2.85e-01 6988.3 0.89% 6977.2 7.91s 7.07s 9

24 nodes 3 2.13e-01 6831.0 0.67% 6822.8 5.67s 4.80s 10
76 links 1 2.39e+01 7329.5 0.29% 7201.4 5.77s 4.82s 11
24 zones 2 2.85e+01 7276.5 0.72% 7192.3 5.90s 5.00s 10

3 2.13e+01 7155.4 0.35% 7031.9 5.19s 4.28s 10
360,600 trips 30 1 2.74e-01 6087.5 0.90% 6060.4 6.94s 5.83s 10

2 2.93e-01 5909.3 0.93% 5875.1 4.45s 3.58s 9
3 2.75e-01 5837.0 0.74% 5806.5 5.33s 4.35s 10
1 2.74e+01 7065.7 0.52% 6691.9 5.75s 4.76s 12
2 2.93e+01 7079.2 0.56% 6771.8 6.33s 5.35s 12
3 2.75e+01 7025.4 0.47% 6593.4 6.19s 5.06s 12

0 7475.7 7475.7
Eastern Massachusetts 10 1 9.22e-03 2061.6 0.74% 2061.5 99.02s 73.87s 12

2 7.94e-03 1750.7 0.96% 1750.7 156.99s 103.19s 12
74 nodes 3 9.29e-03 1886.4 0.99% 1886.2 142.77s 124.02s 12
248 links 1 9.22e-01 2063.3 0.71% 2062.7 103.12s 69.50s 12
74 zones 2 7.94e-01 1757.4 0.99% 1752.4 80.59s 58.36s 12

3 9.29e-01 1892.0 0.90% 1886.0 92.01s 68.52s 11
262,306 trips 30 1 9.47e-03 1287.0 0.96% 1286.8 75.38s 56.85s 13

2 9.89e-03 1607.0 0.88% 1606.8 85.41s 66.18s 13
3 9.36e-03 1910.9 0.98% 1910.5 65.19s 44.68s 11
1 9.47e-01 1303.4 0.97% 1291.1 84.94s 56.97s 12
2 9.89e-01 1617.8 0.97% 1613.4 128.23s 102.24s 13
3 9.36e-01 1927.3 0.83% 1918.7 63.44s 41.48s 12

0 2063.7 2063.7
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Table 2: Demonstration of outer approximation algorithm with column generation on larger networks
Network Non-zero ya vars Inst. Avg. cost Obj. gap TSTT Tot. time TAP time iter.

Berlin Mitte Center 30 1 1.47e-01 12330.2 0.99% 12328.9 599.15s 367.19s 10
2 1.41e-01 11935.4 0.75% 11933.7 1357.30s 388.01s 11
3 1.70e-01 12143.6 0.65% 12141.9 1190.32s 281.67s 11
1 1.47e+00 12338.4 0.98% 12330.9 672.10s 264.45s 10
2 1.41e+00 11948.7 0.75% 11933.8 953.92s 441.00s 11
3 1.70e+00 12156.7 0.61% 12142.4 1188.36s 330.88s 11

60 1 1.40e-01 12107.1 0.73% 12104.3 995.28s 280.07s 11
2 1.45e-01 12050.4 0.69% 12048.6 997.06s 183.12s 11
3 1.38e-01 11870.5 0.86% 11866.9 939.05s 344.88s 10
1 1.40e+00 12127.2 0.97% 12106.5 945.85s 256.55s 10
2 1.45e+00 12064.2 0.76% 12049.7 1189.48s 214.29s 11
3 1.38e+00 11895.8 0.98% 11873.2 1131.25s 386.20s 10

0 12454.1 12454.1
Anaheim 30 1 2.18e-01 101759.4 0.84% 3574.26 1817.44s 207.73s 6

2 2.52e-01 101311.5 0.87% 3548.91 1177.66s 190.55s 6
416 nodes 3 2.77e-01 101359.3 0.96% 3559.22 800.60s 253.73s 6
914 links 1 2.18e+01 101845.7 0.94% 3582.84 1811.69s 192.36s 6
38 zones 2 2.52e+01 101738.2 0.95% 3571.52 1094.11s 184.49s 6

3 2.77e+01 101735.2 0.95% 3575.35 1009.67s 186.35s 6
418,778 trips 60 1 2.28e-01 95760.4 0.97% 3422.53 1951.79s 166.28s 6

2 2.28e-01 100251.7 0.85% 3507.57 1452.14s 146.00s 6
3 2.38e-01 100671.8 0.81% 3508.08 1759.30s 207.75s 6
1 2.28e+01 96193.8 0.95% 3439.27 1438.37s 214.95s 6
2 2.28e+01 100872.8 0.84% 3529.64 1047.13s 154.29s 6
3 2.38e+01 101236.6 0.95% 3533.04 2001.19s 240.15s 6

0 101889.2 101889.2
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