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SHORT SUMMARY 

This paper presents an optimization-based game-theoretical model of road pricing. The model 

incorporates elastic user-demand, multiple user-classes, and an endogenized demand and path-

choice user-equilibrium. After providing a generic model formulation, we apply it to a single-

player optimization problem to find optimal tolls for a government subjected to user-equilibrium. 

We propose a post-processing method that avoids unfavorable outcomes caused by the non-

uniqueness of user-equilibrium path flows. We use the single-player optimization problem to 

develop a game-theoretical framework to solve different competition scenarios. The model is 

applied to two fictional case-studies. The first involves a two-player game-theoretical problem 

and four competition scenarios are elaborated, and the second involves user-class specific 

instruments and demonstrates the relevance of the post-processing. 

Keywords: pricing and capacity optimization; Traffic, network, and mobility management; 

transport economics and policy. 

INTRODUCTION 

Transportation systems consist of several stakeholders who influence each other’s decisions. 

Road pricing is one domain where this is relevant. Decisions regarding tolls are complicated be-

cause of interactions between governments at the same level e.g., two national governments, as 

well as governments at different levels e.g., regional and federal governments. A toll implemen-

tation which ignores such interactions carries the risk of being ill-informed. At the same time, the 

computational effort for analyzing scenarios with due consideration of these interactions can be 

prohibitively high if detailed traffic models like traditional four step models (Li et al., 2021) or 

agent-based simulators (Röder et al., 2013) are used. Such models have detailed representations 

of the underlying network but the optimality of tolls and competition between different payers 

remain unaddressed. Models from the domain of transport economics have paid more attention to 

game-theoretical interactions, like those between governments at equal or different levels (De 

Borger & Proost, 2021). However, these models remain analytical and lack the computational 

scalability required even for aggregated versions of pseudo-real case studies. Further, they model 

only a predetermined fixed set of used/active paths and the crucial choice of not using an available 
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path at all is not modelled. This paper makes two crucial contributions to the state of the art of 

these models: 

• A computational framework for game-theoretical problems with an endogenized demand 

and path-choice user-equilibrium. This endogenizes the crucial conversion of hitherto ac-

tive paths into inactive paths and vice-versa as a reaction to changes in toll values.  

• The underlying User-Equilibrium (U.E.) model incorporates multiple user-classes with dif-

ferent Willingness-To-Pay (WTP) and different Values of Time (VOT). The U.E. model 

further allows to target different user-classes with different tolls.  

(Ohazulike 2014) and (Najmi, Rashidi, and Waller 2023) have also studied game-theoretical prob-

lems in transportation but address only Nash-Cournot interactions, herewith disregarding alterna-

tive competition scenarios. The model presented in this paper is modular in nature and can be 

adapted to different competition scenarios like Nash Cournot and Stackelberg games. 

Another relevant issue is the non-uniqueness of path flows in user-equilibrium corresponding to 

a particular value of toll. The objective function of a government is often dependent on path flows. 

When a government implements a toll that it believes to be optimal, the users may have multiple 

ways to respond, some of which may not lead to the expected optimal outcome for the govern-

ment. To the best of the authors’ knowledge, this issue has not been covered in any of the works 

related to road pricing. As a third contribution: 

• We propose a post-processing method that identifies access restrictions necessary to avoid 

unintended outcomes corresponding to the previously identified optimal tolls. 

1. METHODOLOGY 

In this paper, the term “player” refers to a government which exerts control over the transportation 

system via some toll instruments and the term “users” refers to the general travelers in the trans-

portation system. 

 

The single-player optimization problem then is: 

 

min
𝒙, 𝒕𝒊𝝁

𝑂𝑏𝑗𝜇  

s. t  𝑈. 𝐸. 
(1) 

Where 𝑂𝑏𝑗𝜇  stands for the Objective function of player 𝜇, 𝑈. 𝐸.  stands user-equilibrium, 𝒙 de-

notes the flow pattern of users and 𝒕𝒊𝝁 denotes the toll instruments of player 𝜇. This problem 

represents the Single Leader Multi Follower game between the player and the users. As a Stackel-

berg leader,  the government optimizes its objective function while anticipating user-equilibrium.  

User-Equilibrium Model 

Supply 

Physical network 𝐺(𝑁, 𝐴, 𝑍) where: 

𝑁: set of nodes 𝑖 = 1,2,3…. 

𝐴: set of physical links (𝑖, 𝑗) where from-node 𝑖 ∈ 𝑁 and to-node 𝑗 ∈ 𝑁. 

𝑍: set of centroids i = 1,5,9… 𝑍 ⊆ 𝑁. 
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Demand 

𝐷: set of OD pairs (𝑟, 𝑠) where origin 𝑟 ∈  𝑍 and destination 𝑠 ∈  𝑍.  

𝑑(𝑟,𝑠): Demand level for OD pair (𝑟, 𝑠). 

User-class 

User-classes 𝑢 ∈ 𝑈, where 𝑈 is the set of all modelled user-classes.  

𝑈(𝑟,𝑠): set of all user-classes 𝑢 ∈ 𝑈 which are relevant to be modelled for OD pair (𝑟, 𝑠) with 

𝑈(𝑟,𝑠) ⊆ 𝑈 ∀ (𝑟, 𝑠)  ∈  𝐷.  

𝐷(𝑢,(𝑟,𝑠)) : set of Origin-Destination-User-class (ODU) triplets (𝑢, (𝑟, 𝑠)). 

𝑑(𝑢,(𝑟,𝑠)) : Demand level for ODU triplet (𝑢, (𝑟, 𝑠)).  

Demand Elasticity 

Each 𝑑 (𝑢,(𝑟,𝑠)) may have a different elasticity, which is modelled by linear WTP curve as follows: 

𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) = 𝐴(𝑢,(𝑟,𝑠)) − 𝐵(𝑢,(𝑟,𝑠)) ∗ 𝑑( 𝑢,(𝑟,𝑠)) ∀ (𝑢, (𝑟, 𝑠)) ∈  𝐷(𝑢,(𝑟,𝑠)) 

(2) 

Paths 

A path is a sequence of connected links from origin 𝑟 to destination 𝑠 for an ODU triplet 

(𝑢, (𝑟, 𝑠)). 

𝑃: set of all modelled paths 𝑞 over all (𝑢, (𝑟, 𝑠)) ∈  𝐷(𝑢,(𝑟,𝑠)). 

𝑃(𝑢,(𝑟,𝑠)): set of all paths 𝑞 ∈  𝑃 specific to ODU triplet (𝑢, (𝑟, 𝑠)) with 𝑃𝑢,(𝑟,𝑠) ⊆ 𝑃. 

Pre-processing 

Pre-processing enumerates relevant available paths. This results in a Link-Path incidence matrix 

where: 

𝛿(𝑖,𝑗),𝑞 = {
1, 𝑖𝑓 𝑝𝑎𝑡ℎ 𝑞 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑠 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 (𝑖, 𝑗)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3) 

Path Flows 

𝑥𝑞: Flow of users on path 𝑞 ∈ 𝑃. 

Link Flows 

𝑓(𝑖,𝑗) = ∑ 𝛿(𝑖,𝑗)𝑞
𝑞 ∈ P 

∗ 𝑥𝑞 

(4) 

Link Travel Time 

𝑙𝑐(𝑖,𝑗) = 𝑎(𝑖,𝑗) + 𝑏(𝑖,𝑗) ∗ (𝑓(𝑖,𝑗)) 

𝑎(𝑖,𝑗) > 0, 𝑏(𝑖,𝑗) > 0 ∀ (𝑖, 𝑗)   ∈  𝐴   

(5) 
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Generalized Link Cost 

Generalized link costs (𝑔𝑙𝑐) are defined for each link (𝑖, 𝑗)  and for each ODU triplet (𝑢, (𝑟, 𝑠)): 

𝑔𝑙𝑐(𝑖,𝑗)
(𝑢,(𝑟,𝑠))

= 𝑙𝑐(𝑖,𝑗) ∗ 𝑉𝑜𝑇
(𝑢,(𝑟,𝑠)) + ∑ 𝑡

𝑡 ∈ 𝑇(𝑖,𝑗)

+ ∑ 𝑡

𝑡 ∈ 𝑇(𝑖,𝑗)
(𝑢,(𝑟,𝑠))

 

 𝑤ℎ𝑒𝑟𝑒 

𝑇(𝑖,𝑗) = 𝑇_𝑓𝑖𝑥𝑒𝑑(𝑖,𝑗)  ∪ ( ⋃ 𝑇_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖,𝑗),𝜇
𝜇 ∈𝑃𝑆

) 

(6) 

𝑇(𝑖,𝑗)
(𝑢,(𝑟,𝑠))

= 𝑇_𝑓𝑖𝑥𝑒𝑑(𝑖,𝑗) 
(𝑢,(𝑟,𝑠))

 ∪ ( ⋃ 𝑇_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖,𝑗),𝜇 
(𝑢,(𝑟,𝑠))

𝜇 ∈PS

) 

𝑇(𝑖,𝑗) and 𝑇(𝑖,𝑗)
(𝑢,(𝑟,𝑠))

 are the sets entry-based monetary costs on link (𝑖, 𝑗) including fixed costs and 

control instruments implemented by players. 𝑇(𝑖,𝑗) is for all users while 𝑇(𝑖,𝑗)
(𝑢,(𝑟,𝑠))

  targets specifi-

cally ODU triplet (𝑢, (𝑟, 𝑠)).  

𝑃𝑆: set of players. 

𝑉𝑜𝑇(𝑢,(𝑟,𝑠)): VoT of ODU triplet (𝑢, (𝑟, 𝑠)). 

Generalized Path Cost (𝑔𝑝𝑐) 

𝑔𝑝𝑐𝑞 = ∑ 𝛿(𝑖,𝑗)𝑞
′

(𝑖,𝑗)∈ 𝐴 

∗  𝑔𝑙𝑐(𝑖,𝑗) 

 ∀ 𝑞 ∈ 𝑃𝑢,(𝑟,𝑠), ∀ (𝑢, 𝑟, 𝑠)  ∈  𝐷𝑢,𝑟,𝑠 

Active Path 

All paths 𝑞 ∈ 𝑃(𝑢,(𝑟,𝑠)) with 𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) − 𝑔𝑝𝑐𝑞 =   0 at user-equilibrium are considered active 

whereas, those with 𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) − 𝑔𝑝𝑐𝑞 <   0 are considered inactive.  

Mixed Integer User-Equilibrium (MIUE) 

Binary variable 𝑖𝑞 = 0 if path 𝑞 is inactive, and 𝑖𝑞 = 1 if it is active. Using the big-M concept, 

we express the U.E. as the following mixed-integer user-equilibrium conditions:   

∑ 𝑥𝑞
𝑞 ∈ 𝑃(𝑢,(𝑟,𝑠))

= 𝑑(𝑢,(𝑟,𝑠)) ∀ (𝑢, (𝑟, 𝑠))  ∈  𝐷(𝑢,(𝑟,𝑠))

𝑥𝑞 ≥ 0  ∀ 𝑞 ∈ 𝑃

𝑑(𝑢,(𝑟,𝑠)) ≤ 𝑑_𝑚𝑎𝑥(𝑢,(𝑟,𝑠)) ∀ (𝑢, (𝑟, 𝑠))  ∈  𝐷𝑢,(𝑟,𝑠)
𝑥𝑞 −𝑀 ∗ 𝑖𝑞  ≤ 0  ∀ 𝑞 ∈ 𝑃

𝑀 ∗ (𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) − 𝑔𝑝𝑐𝑞)  + (1 − 𝑖𝑞) ≤   0  ∀ 𝑞 ∈ 𝑃(𝑢,(𝑟,𝑠), ∀ (𝑢, (𝑟, 𝑠))  ∈  𝐷(𝑢,(𝑟,𝑠))
−(𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) − 𝑔𝑝𝑐𝑞)  +  𝑀 ∗ 𝑖𝑞 −𝑀 ≤   0  ∀ 𝑞 ∈ 𝑃(𝑢,(𝑟,𝑠), ∀ (𝑢, (𝑟, 𝑠))  ∈  𝐷𝑢,(𝑟,𝑠)

 

(7) 

Existence and Uniqueness of User-Equilibrium 

If all 𝑔𝑙𝑐(𝑖,𝑗), 𝑔𝑝𝑐𝑞 , and 𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) are continuous in 𝑓(𝑖,𝑗), 𝑥𝑞 and 𝑑(𝑢,(𝑟,𝑠)) respectively and all 

𝑑(𝑢,(𝑟,𝑠)) are bounded above with 1) 𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) at 𝑑_𝑚𝑎𝑥(𝑢,(𝑟,𝑠)) being lower and 2) 
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𝑊𝑇𝑃(𝑢,(𝑟,𝑠)) at zero demand being higher than 𝑔𝑝𝑐 of the cheapest path for that (𝑢, (𝑟, 𝑠)), then 

there is at least one feasible path flow vector satisfying the user-equilibrium conditions for given 

sets of 𝑇(𝑖,𝑗) and  𝑇(𝑖,𝑗)
(𝑢,(𝑟,𝑠))

. This can be proven with Brouwer’s and Kakutani’s theorems but for 

the sake of brevity, the proof is not included. 

For the general case, uniqueness of equilibrium path flows is not guaranteed. This is crucial when 

players’ objective functions depend on path flows.  

Objective Function Formulation 

The objective function of government-type players is modelled as: 

𝑂𝑏𝑗𝜇 = −(𝑆𝑊𝑙𝑓𝜇 − 𝑆𝑇𝐶𝜇 + 𝑇𝑅𝜇) ∀ 𝜇 ∈  𝑃𝑆  

(8) 

𝑤ℎ𝑒𝑟𝑒 

𝑆𝑊𝑙𝑓𝜇 = ∑ ∫ (𝑊𝑇𝑃(𝑢,(𝑟,𝑠))) d𝑑(𝑢,(𝑟,𝑠))

𝑑(𝑢,(𝑟,𝑠))

0(𝑢,(𝑟,𝑠)) ∈ 𝐷(𝑢,(𝑟,𝑠)),𝜇

= ∑ (𝐴(𝑢,(𝑟,𝑠)) ∗ 𝑑(𝑢,(𝑟,𝑠)) −
𝐵(𝑢,(𝑟,𝑠)) ∗ 𝑑(𝑢,(𝑟,𝑠))

2

2
)

(𝑢,(𝑟,𝑠)) ∈ 𝐷(𝑢,(𝑟,𝑠)),𝜇

  

(9) 

𝑆𝑇𝐶𝜇 = 𝑇𝑇𝐶𝜇 + 𝑆𝐸𝐶𝜇 

𝑇𝑇𝐶𝜇 = ∑ ( ∑ 𝑥𝑞 ∗ (𝑔𝑝𝑐𝑞)

𝑞 ∈𝑃𝑢,(𝑟,𝑠)

)

(𝑢,(𝑟,𝑠)) ∈ 𝐷(𝑢,(𝑟,𝑠)),𝜇

 

𝑆𝐸𝐶𝜇 = ∑ {𝜆(𝑖,𝑗) ∗ (𝑙𝑐(𝑖,𝑗))}

(𝑖,𝑗) ∈ 𝐴𝜇

+ ∑(𝜎𝑞
𝜇
∗ 𝑥𝑞)

𝑞 ∈ 𝑃

 

(10) 

𝐷(𝑢,(𝑟,𝑠)),𝜇: set of ODU triplets under the electorate of government-type player 𝜇. 

𝑆𝑊𝑙𝑓𝜇 and 𝑇𝑇𝐶𝜇: social welfare and total travel costs of the society under the jurisdiction of 

player 𝜇 respectively. 𝑆𝑊𝑙𝑓𝜇 represents the total benefit that the society makes by travelling. 

𝑆𝐸𝐶𝜇: social external costs of the society under jurisdiction of player 𝜇. 𝜆(𝑖,𝑗) and 𝜎𝑞 are pre-

decided scalar factors. 

𝑇𝑅𝜇: revenue collected by player 𝜇.  

𝑇𝑅𝜇 = 𝑇𝑅𝜇,𝑙𝑖𝑛𝑘 + 𝑇𝑅𝜇,𝑙𝑖𝑛𝑘−(𝑢,(𝑟,𝑠)) 

𝑇𝑅𝜇,𝑙𝑖𝑛𝑘 = ∑ [{ ∑ 𝑡

𝑡 ∈ 𝑇_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖,𝑗),𝜇

} ∗ 𝑓(𝑖,𝑗)]

(𝑖,𝑗) ∈ 𝐴𝜇
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𝑇𝑅𝜇,𝑙𝑖𝑛𝑘−(𝑢,(𝑟,𝑠)) = ∑

[
 
 
 
 

∑

[
 
 
 
 

[
 
 
 

∑

{
 

 

𝛿(𝑖,𝑗)𝑞
′ ∗ ∑ 𝑡

𝑡 ∈ 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖,𝑗),𝜇
(𝑢,(𝑟,𝑠))

}
 

 

(𝑖,𝑗)∈ 𝐴𝜇

]
 
 
 

∗ 𝑥𝑞

]
 
 
 
 

𝑞 ∈𝑃(𝑢,(𝑟,𝑠))
]
 
 
 
 

(𝑢,(𝑟,𝑠)) ∈ 𝐷(𝑢,(𝑟,𝑠))  

 

(11) 

𝑂𝑏𝑗𝜇 depends on path flows and can’t be fully evaluated with just link flows. 

Single-Player Optimization: Mixed-Integer Quadratic Programming (MIQP) 

The optimization problem of a single government-type player, initially presented in Equation 

(1), is formulated as an MIQP employing the MIUE of Equation (7) as a constraint and can be 

solved using MIP solvers like Gurobi and CPLEX. 

𝐦𝐢𝐧
𝒊,𝒙,𝒅,𝝉𝝁

𝑂𝑏𝑗𝜇 ∀ μ ∈ PS 

s. t    𝑀𝐼𝑈𝐸 

(12) 

Post-processing: 

Once the optimal value of instruments is determined, the uniqueness of user-equilibrium path 

flows corresponding to those values can be determined by post-processing. There may exist mul-

tiple feasible user-equilibrium path flow vectors for the optimal values of instruments. Some of 

these vectors may have an objective function value worse than the intended optimal point. So, it 

is important for the player to verify whether the optimal instrument values lead to a unique user-

equilibrium and hence, to the intended objective function value without the possibility of an un-

favorable response by users. We propose the following post-processing method to address this: 

1. After solving the optimization problem, set/fix all instruments to solution values.  

2. Solve the optimization problem again with fixed instruments but instead of minimizing 

the objective function, maximize it.  

3. This represents the most unfavorable response (MUR) of users to the previously deter-

mined optimal instrument values. If the original solution and the MUR case lead to same 

objective function values, the player can be assured of the outcome.  

4. If, however, the difference is significant, compare path flows in the two solutions. Now, 

depending on the ease of implementation of available access restrictions e.g., metered 

access etc., the player should start introducing explicit constraints on the corresponding 

path and link flow variables in the optimization problem and solve the MUR case again.  

5. This can be repeated until the difference between the objective functions in the original 

and the MUR solution is acceptable.  In this way, the player can iteratively determine the 

minimum explicit constraints or access restrictions required to prevent the unfavorable 

responses of users. 

    

Multi-Player Games: Nash-Cournot (NC) Game 

When there are several governments taking decisions simultaneously, the resulting game is a 

Nash-Cournot game. It can be formulated as a fixed-point problem in which the players 
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sequentially solve their single-player optimization problems while considering fixed instruments 

of other players fixed. Each player, individually, still acts a leader over the users. This process is 

shown in Figure 1.  

 

Figure 1: NC game solution process 

Existence  

Existence conditions for Nash equilibrium of a general n-player game are given by the Debreu-

Glicksberg-Fan Theorem. This model does not follow these conditions. (Ohazulike, 2014) also 

confirms that Nash Equilibrium for Nash-Cournot game in road pricing may not exist in general.  

Multi-Player Games: Stackelberg Games 

In Stackelberg games, the leader optimizes its objective function subject to the optimum of the 

follower or the Nash-Cournot game equilibrium (NCE) of followers as represented in Figure 2. 

 

Figure 2: Stackelberg game as an optimization problem of the leader with single 

follower (left) and multiple followers in NC game (right) 

Even with a single follower player, this problem is an optimization problem which is subject to 

another optimization problem which itself is subject to the U.E. of users. It is highly non-convex 

and is not suitable to be solved by exact methods. We solve this problem with the use of meta-

model-based Blackbox optimization methods like Bayesian Optimization, SHERPA (SHERPA 

White Paper, n.d.) etc.  
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Existence 

If the follower(s) has/have a unique response (instruments’ values) for each feasible value of the 

leader’s instruments, and the leader’s instruments are bounded on both sides, then Stackelberg 

equilibrium should exist. For the case of a single follower player, the former condition and hence 

the existence is guaranteed if the objective function is quasi-convex. For the case of Nash-Cournot 

game between followers, as mentioned before, NCE may not exist. Consequently, the overall 

Stackelberg equilibrium may also not exist. 

2. RESULTS AND DISCUSSION 

We present two case studies. The parameters used in these case studies are not calibrated to any 

real scenario and should only be interpreted in relative sense.  

Case Study 1: Multi-player games and multi-user-classes 

The city government (player 1) charges the toll 𝑡𝑟𝑎𝑑 for radial roads and the rural government 

(player 2) charges the toll 𝑡𝑚 for the neighbouring rural roads. The primary aim of this case study 

is to demonstrate an application of the multi-player framework. 

 

 

Figure 3: Network-Case Study 1: Node ID (blue), link indices (green) and circled 

link indices of tolled links 
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Table 1: Problem Specification-Case Study 1 
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Table 2: WTP Parameters- normal users 

 
 

Table 3: WTP Parameters- cost-insensitive users 

 
 

Table 4: Links-paths incidence matrix 
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Table 5: Link travel time and external cost parameters 

 
 

Central optimization: 

Central optimization problem represents the case when both governments act jointly as a single 

player. The central objective function is modelled by considering: 

1. 𝑇_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖,𝑗)
𝑐 = 𝑇_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖,𝑗)

1 + 𝑇_𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖,𝑗)
2  for all  (𝑖, 𝑗)   ∈  𝐴. 

2. 𝐷(𝑢,(𝑟,𝑠)),𝑐 = 𝐷(𝑢,(𝑟,𝑠)),1 ∪ 𝐷(𝑢,(𝑟,𝑠)),2 

3. 𝐴𝑐 = 𝐴1 ∪ 𝐴2 

The results are summarized in Table 6. 

Nash-Cournot game equilibrium: 

The game is initialized with all instruments set to zero. The evolution of toll values and the three 

objective functions is shown in Figure 4 and Figure 5 respectively.  

 

 

 

Figure 4: Evolution of the two tolls over NC game iterations 
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Figure 5: Evolution of the central and the two player’s objective functions over NC 

game iterations 

 

Reaction functions of the two players are plotted in Figure 6. The Nash-Cournot game equilib-

rium is marked by a black circle. The results are summarized in Table 6. 
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Figure 6: Reaction functions: Player 1 (red curve; setting T_rad) and Player 2 (blue 

curve, setting T_m) 

 

Stackelberg game equilibrium:   

The Nash Stackelberg equilibrium points when player 1 and when player 2 act as leaders are 

visualized in Figure 6 as black triangles on the blue and the red response curves respectively. The 

corresponding values are summarized in Table 6. As may be intuitive from the power that 

Stackelberg leadership grants, both players gain over NC-interaction when given opportunity to 

be a leader (although Player 2 only marginally). When collaborating (central case), Player 2 sac-

rifices optimality for the sake of higher Player 1 gain. 

Table 6: Results for Case Study 1 
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Case Study 3: Non-uniqueness issues and user-class-based instruments  

The primary aim of this case study is to demonstrate a case where multiple user-equilibria might 

exist for the same value of tolls and when user-class differentiated tolls are applied by the gov-

ernments. The adaptations from first case study are mentioned in Table 7.  

Table 7: Adaptations from Case Study 1 

 

 

Figure 7: Network- Case Study 2 
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Figure 8: The four radial paths 

The solution to the central optimization problem is shown in Table 8. The MUR solution, also 

shown in Table 8, is found by fixing the tolls to their optimal values and maximizing 𝑂𝑏𝑗𝑐. There 

is an appreciable difference between 𝑂𝑏𝑗𝑐 values in the two cases. This is primarily due to the 

non-uniqueness in the path-choice of the fixed demand external ODU triplet (2,(1,4)). In the orig-

inal solution, the radial paths without up-down or down-up transfers are chosen whereas, in the 

MUR solution, the paths with transfers are chosen. The latter paths lead to higher external costs 

thereby worsening  𝑂𝑏𝑗𝑐. Two levels of access restrictions targeting these paths are tested. First, 

we implement a flow metering measure in which the flow on the transfer paths is limited to 10 

units each. This significantly limits the worsening of  𝑂𝑏𝑗𝑐 in MUR case. However, to completely 

avoid any less favorable outcome, these paths need to be completely blocked. 

Table 8: Results for Case Study 2 

 

Refinement of Case Study 3: User-class-based instruments 

The two link-based instruments i.e., 𝑡𝑟𝑎𝑑 and 𝑡𝑚 are replaced by four link-ODU triplet-based 

instruments i.e., 𝑡𝑟𝑎𝑑
1,(𝑟,𝑠)

, 𝑡𝑟𝑎𝑑
2,(𝑟,𝑠)

, 𝑡𝑚
1,(𝑟,𝑠)

and 𝑡𝑚
2,(𝑟,𝑠)

for all (𝑟, 𝑠)  ∈  𝐷. The solution of central opti-

mization is shown in Table 9. 𝑂𝑏𝑗𝑐 is remarkably better than the previous case. Thus, in presence 

of different user-classes in the transportation system, instruments that discriminate between them 

can lead to significant gains for the governments. 
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Table 9: Results for Case Study 2: User-class differentiated tolls. 

 

3. CONCLUSIONS 

We presented an optimization-based game-theoretical model of road pricing, which incorporates 

elastic user-demand, multiple user-classes, and an endogenized combined demand and path-

choice user-equilibrium. Single-player optimization problem and the frameworks for Nash-

Cournot and Stackelberg games are elaborated. We also presented a post-processing method to 

address the issue of non-unique path flows in user-equilibrium. 

The demonstration via the case studies serves as a motivation to apply this model to pseudo-real 

case studies. Moreover, owing to the endogenized demand and path-choice user equilibrium, such 

a model serves as a candidate for a metamodel like the one mentioned in (Malik & Tampère, 

2023), where it is used to guide search in a full network model.  
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