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SHORT SUMMARY 

Ongoing research in transport modelling is gradually shifting from the traditional Rational 

Expectations framework, premised on the assumption of fully informed, optimizing, and self-

interested decision-makers, to a more nuanced understanding of traveller behaviour under 

Bounded Rationality. However, the focus is typically targeted on developing advanced choice 

models to forecast travellers’ behaviour, with less emphasis on the subsequent response of 

competing suppliers. Recognizing the cognitive cost of acquiring and processing information 

(e.g., price, travel time) this paper explores the implications of Rational Inattention in the context 

of revenue management from the perspective of the transport service provider. Through a series 

of numerical experiments, we compare optimal pricing strategies in a duopolistic taxi/ride-hailing 

market, contrasting the outcomes derived from neoclassical models with those incorporating 

information capacity constraints and the formulation of prior, unconditional probabilities of 

choice. Our findings suggest that traditional Random Utility models (e.g., MNL) might 

overestimate the market share capture of minor, economical market players, failing to account for 

the influence of prior perceptions, and the scarcity of consumers’ attentional resources. This can 

lead to suboptimal pricing strategies, especially when introducing heterogeneity in the population. 

Through the analysis of varying levels of information acquisition cost, we observe a distinct 

advantage accruing to established providers, which is magnified as information costs increase, 

when other profitable opportunities are easily missed. Interestingly, beyond a certain threshold, 

minor competitors are also incentivized to obfuscate their pricing, leading to mutually profitable 

obfuscation pricing strategies and underscoring the need for market regulation. By incorporating 

discrete choice models of Rational Inattention into revenue management, this paper contributes 

to an alternative, potentially more realistic portrayal of travel demand and supply interaction, 

highlighting biases in conventional forecasts and identifying risks related to the exploitation of 

travellers’ cognitive capacity constraints. 
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1. INTRODUCTION 

The field of transportation planning and policy is typically reliant on predictive models that 

delineate and anticipate the behavioural patterns of travellers. Traditionally based on the Rational 

Expectations theory of economics, these models are grounded on the assumption that decision-

makers are optimizing, strategic, and self-motivated in their choices. This conventional paradigm, 

however, does not sufficiently account for the observed inertia and aversion to change in travel 

behaviour under conditions of uncertainty, nor for the presence of strong prior beliefs formed 

through, for example, the accumulation of experience or observation of other travellers. Several 

theories have emerged as alternatives, aiming at extending the scope of rationality. Prominent 

examples include Bounded Rationality (Simon, 1955), Prospect Theory (Kahneman and Tversky, 

1979), and lately Rational Inattention (Sims, 2003). 

 
The rising interest in the Rational Inattention (RI) hypothesis, initially proposed by Christopher 

Sims in 2003, introduces a nuanced explanation for the above phenomena. The theory entails that 
individuals may intentionally select what appear to be suboptimal decisions, influenced by 

information costs associated with the acquisition and processing of information. Expanding upon 

this premise, Matejka and McKay in 2015 applied the RI hypothesis to discrete choice models, 

under the constraints of imperfect information and cognitive limitations. This progression in 

theoretical understanding has brought RI to a prominent position, providing a framework for 

analysing decision-making processes in complex and dynamic transportation settings. Notable 

past applications of the theory in transportation include the work of Fosgerau (2019), and 

subsequently Jiang (2020), who focused on route and departure time choice under the RI 

framework and presented a series of numerical experiments. Fosgerau et al. (2020) proceeded to 

establish the general equivalence between Random Utility (RUM) and RI models, creating an 

alternative point of view in the interpretation of conventional modelling methods. In terms of 

empirical applications, Habib (2022) concentrated on the estimable use-cases of discrete choice 

models within the Rational Inattention framework, and specifically the RI-MNL and RI-NL 

models. 

 

With the landscape of transport services offerings becoming more diverse, an evolving field of 

application for behavioural models is the examination of choice within the context of a systems’ 

optimisation. While revenue management has been discussed in transport for decades, initial 

efforts assumed decision-making being deterministic or implemented model simplifications and 

linearization with tractable representations (e.g. Talluri and Ryzin, 2004; Andersson, 1998) due 

to convexity and linearity conditions. However, those model structures did not allow for the 

integration of behaviourally advanced representations, which commonly require simulation, and 

they are in most cases non-convex and non-linear. An emerging stream of research bases the 

integration of more advanced choice models utilising the utility function and deploying simulation 

for the random component (Pacheco Paneque et al., 2021). This approach has been the basis for 

subsequent studies that integrate the utilization of choice models broadly within optimization, 

thus also applicable to revenue management (e.g. Pacheco Paneque et al., 2022; Haering et al., 
2023). Recently, this premise was also applied to generate a framework for equilibrium solutions 

in oligopolistic markets, with consumer choices being modelled according to the random utility 

theory (Bortomiol et al., 2022). 

 

Although forming a set of seminal studies, the above pertinent literature is bounded by the 

neoclassical assumptions, and specifically that decision-makers evaluate the entirety of the choice 

set and process all available information. However, this assumption is challenged by the dynamic 

nature of information provision which has become commonplace within competitive markets of 

multiple providers and the increased complexity of offerings (e.g. Mobility as a Services, 
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Ridesharing, Airline markets). In the economics literature there exist studies which investigate 

pricing using such novel behavioural theories, aiming to explain several real-world phenomena 

such as rigid pricing (Matejka 2015), and the emerging of information obfuscation equilibria 

(Janssen et al., 2024). However, their association in transport planning and policy remain 

relatively unexplored. 

 

Building upon the findings of previous literature, in this study we investigate the implications of 

Rational Inattention in the context of revenue management from the perspective of the transport 

service provider. Through a series of numerical experiments, we compare optimal pricing 

strategies in a duopolistic taxi/ride-hailing market, contrasting the outcomes derived from 

neoclassical models with those incorporating information capacity constraints and the formulation 

of prior, unconditional probabilities of choice. This remainder of this paper is structured as 

follows: we first present the methodology including the RI revenue maximisation formulation 

(Section 2). Then we apply the methodology and compare the findings to a RUM-based approach 

(Section 3). We proceed to analyse the results, interpret different market strategies, and provide 

policy-related recommendations with regards to regulation in transport markets (Section 4). 

Finally, we summarize and outline the future work directions (Section 5). 

2. METHODOLOGY 

We proceed with the outline of the revenue estimation methodology under the Rational Inattention 

behavioural framework, based on the work of Matejka and McKay (2015) and Caplin, Dean and 

Leahy (2019).  

 

Problem Definition 

 

The agent observes an unknown state 𝑥 (e.g., price, travel time), with their initial belief 

represented by the probability density function 𝑔(𝑥). The decision-making process involves two 

stages: firstly, the selection of signal 𝑠 through the information strategy 𝑓𝑠𝑥(𝑠|𝑥), where the agent 

refines their belief about the state in face of uncertainty, and secondly, the choice of action 𝑦, 

described by the action strategy 𝑓𝑦𝑠(𝑦|𝑠),  The objective (1) is to maximize the expected utility 

𝑈(𝑦, 𝑥) while minimizing the cost associated with acquiring information, denoted as 𝐶(𝑓𝑠𝑥).  

 

max
𝑓𝑠𝑥,𝑓𝑦𝑠

𝔼[𝔼𝑈(𝑦, 𝑥)|𝑠] − 𝐶(𝑓𝑠𝑥(𝑠|𝑥))    (1) 

 

Although this is a two-stage choice, the joint probability 𝑓(𝑦, 𝑥) is sufficient to describe both the 

choice of information signal and action, as they should be derived such that no two signals lead 

to the same action. Otherwise, the agent would be wasting attentional resources by distinguishing 

between signals that do not directly affect their actions. As a result, it is possible to make a one-

to-one association between the signal and action and analyse the relationship between attention, 

allocation, information acquisition, and decision-making in a unified framework. Therefore, the 

objective function (2) is maximized subject to the Bayesian rationality constraint (3), ensuring the 

consistency between prior and posterior beliefs, 

 

max
𝑓

∫ 𝑈(𝑦, 𝑥)𝑓(𝑦, 𝑥)𝑑𝑥𝑑𝑦 − 𝐶(𝑓)    (2) 

∫ 𝑓(𝑦, 𝑥)𝑑𝑦 = 𝑔(𝑥)    (3) 

 

The cost function (4) is conceptualized as a representation of the resources and cognitive effort 

expended by the agent in acquiring and comprehending information regarding the observed 
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variable. It is measured by contrasting the entropy of the initial distribution of 𝑥 with that under 

knowledge of 𝑦. The parameter 𝜆, often referred to as the "attention cost" or "information cost," 

serves as a metric for the cognitive and computational resources allocated to the process of 

information acquisition and processing. 

 

𝐶(𝑓) = λ ⋅ 𝐼(𝑦; 𝑥) ≡ λ ⋅ [𝐻(𝑥) − 𝐸[𝐻(𝑥|𝑦)]]    (4) 

 

The entropy under Shannon's formulation (5) is typically used to quantify this uncertainty 

reduction, which measures the amount of information present in the probability distribution of 𝑥. 

As such, 𝐼(𝑦; 𝑥) is the Shannon mutual information of the random variables 𝑥 and 𝑦 (6).  

 

𝐻[𝑔(𝑥)] = − ∫ 𝑔(𝑥)𝑙𝑜𝑔 𝑔(𝑥)𝑑𝑥    (5) 

 

𝐼(𝑦; 𝑥) ≡  ∫ 𝑓(𝑥, 𝑦)log (
𝑓(𝑦,𝑥)

𝑔(𝑥)𝑝(𝑦)
)𝑑𝑥𝑑𝑦    (6) 

 

Therefore, the cost function imposes penalties on the observation of the unknown state, depending 

on the desired precision, due to the cognitive burden associated with the acquisition and 

processing of the information signal.  

 

Choice Probability 

 

The general solution of the agent’s problem for an unknown state of the network 𝑥 has the 

following probabilistic logit form, where 𝑝(𝑦) is the unconditional (marginal) probability of each 

action 𝑦. 

 

𝑓(𝑦|𝑥) =
𝑝(𝑦)𝑒𝑈(𝑦,𝑥)/𝜆

∫ 𝑝(𝑧)
 

 𝑧
𝑒𝑈(𝑦,𝑥)/𝜆𝑑𝑧

    (7) 

 

Specifically for the case of a discrete alternative set 𝑦 ≡ 𝑖 ∈ {1, … , 𝑁}, the following choice 

probabilities are derived, 

 

𝑃(i|x) =
𝑒

𝑈(𝑖,𝑥)+𝑎(𝑖)
𝜆

∑ 𝑒
𝑈(𝑗,𝑥)+𝑎(𝑗)

𝜆𝑌
𝑗=1

    (8) 

 

Any experience, existing knowledge and approach towards processing information are reflected 

in the probability form via the weights 𝛼(𝑖), allocated to each alternative in the choice set. These 

priors adjust the probabilities in line of alternatives that were considered favorable, and they are 

entirely unrelated to the current utility of these options. With an increase in the information 
processing cost, the observed choices become less influenced by the utility and more by the initial 

beliefs and prior unconditional probabilities. 

 

Identification of Priors 

 

While initial research was focused on the derivation of the probability form, Caplin et al. (2019) 

described the solution process for obtaining the unconditional probabilities 𝑃(𝑖), by proving the 

following slackness condition. It has been shown that the information strategy of the agent is 

optimal if and only if for all actions, 

 

∑
𝑒𝑈(𝑖,𝑥)/𝜆𝑃(𝑥)

∑ 𝑒𝑈(𝑗,𝑥)/𝜆𝑌
𝑗=1 𝑃(𝑗)𝑥∈𝑋 ≤ 1    (9) 
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To compute the probability 𝑃(𝑖) for each action, we begin with an initial guess 𝑃0(𝑦) for each 𝑦 

in 𝑌. The initial estimate is updated through iteration until convergence is achieved, with each 

subsequent probability vector derived from the previous one using the iterative algorithm. Choice 

alternatives where 𝑃1(𝑦) < ξ are set to 0. 

 

𝑃𝑙+1(𝑖) = ∑
𝑒𝑈(𝑖,𝑥)/𝜆𝑃(𝑥)

∑ 𝑒𝑈(𝑗,𝑥)/𝜆𝑌
𝑗=1 𝑃(𝑗)𝑥∈𝑋 𝑃𝑙(𝑖)    (10) 

 

Therefore, we observe the unique capability of the Rational Inattention framework to account for 

endogenous choice set formulation, as some alternatives will not even be considered, which would 

not be the case in typical RUM models. 

 

Expected Revenue Calculation 

 

Once the unconditional probabilities (priors) and choice probabilities have been derived, the total 

revenue of a supplier 𝑠 for a product 𝑖 with price 𝑥 can be calculated as, 

 

𝑅𝑖,𝑠 =   ∑ 𝑁𝑚
𝑀
𝑚=1 𝑃𝑚(𝑖|𝑥)𝑥𝑖,𝑠    (11) 

 

, where 𝑁 is the size of a specific market segment 𝑚.  

 

The multi-step methodological approach presented in this Section allows for a comprehensive 

and disaggregate analysis of revenue generation, with regards to the interplay between market 

segmentation, consumer behaviour, and suppliers’ pricing strategies. 

3. NUMERICAL EXPERIMENTS 

To evaluate the properties of the methodological framework for transport revenue management, 

we proceed to conduct a series of simulation experiments. We consider a duopolistic taxi/ride-

hailing market, competing over a standard origin-destination (OD) route, such as the one between 

an airport and a city center. Within this market, the standard taxi service (STS) operates under a 

fixed fare of 15 units. In contrast, the ride-hailing flexible service provider (FLS), a new and more 

economical player, has adopted adaptive pricing, fluctuating between 10 and 17 units.  

 

We proceed to introduce a level of heterogeneity within the population, by clustering it into two 

distinct segments: "Convenience Seeker" and "Price Sensitive" travellers. The former, favors the 

readily available STS service which is easily accessible and might not necessitate pre-booking or 
the use of a smartphone-based application, while the latter, comprises of individuals who seek 

cost efficiency (e.g., students), exhibit a weaker preference for the STS and are more inclined to 

consider the FLS service. Assuming linear in parameters utility functions, the simulation 
parameters are summarized in Table 1.  

 

Our initial goal is to identify the revenue management strategies for the two service providers, 

first based on the theory of Rational Expectations, using the traditional Multinomial Logit model 

(MNL), and second under the Rational Inattention framework presented in Section 2. For the 

latter, we adopt a uniform prior for agent beliefs over the FLS price distribution, denoted by 𝑋 ∼
𝑈(10,17), while the information parameter 𝜆 is normalized to 1 for both models. It is important 

to note that there is no requirement for the agents' beliefs to mirror the actual simulated price 
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distribution, but that would incur potentially higher “mistakes” in the case of a bounded rational 

decision maker. 

Table 1 Simulation experiment parameters 

Population Segments Convenience Seeker Price Sensitive 

Description Param. 

 

Value Param. Value 

Alternative specific constant 

for Standard Service 

ASCSTS,1 2.8 ASCSTS,2 1.9 

Price coefficient βPRICE,1 -0.9 βPRICE,2 -2.1 

Number of people  

in the segment 

N1 550 N2 450 

 

With regards to the RI model, the optimality of the iterative solution assumes the choice set is 

extensive enough to cover all possible choices. Given that our analysis accounts for the entirety 

of the duopoly market structure, it is ensured that the algorithm yields the optimal priors solution.  

 

 

 
Figure 1Total revenue for different price levels assuming Neoclassical (top) 

and Rationally Inattentive travellers (bottom) 

 

Figure 1 presents the total revenue projections of the two service providers for different levels of 

the FLS price. Under the neoclassical model, we observe a significant overestimation of revenues 

for the FLS particularly at lower price levels. This discrepancy is attributed to the model's 

assumption of complete price transparency, which posits that consumers, being fully informed, 

will invariably opt for the most opportunistic solution. This assumption, however, does not hold 
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when consumers' attention is limited, even in abundance of information.  In contrast, the RI 

framework accounts for these real-world consumer behavior complexities. The prior algorithm 

estimates a very low unconditional probability of FLS choice by Convenience Seekers, at 1.5%. 

Even for the lowest FLS price of 10 units, we find that the Convenience Seekers will not be 

identifying this opportunity at a probability higher than 10%, justifying the ~50% reduction in 

expected revenue. Conversely, Price Sensitive travellers are to prefer the FLS 64.2% of the time.  

 

 

Figure 2 FLS revenue for each population segment and total market share (Neoclassical) 

 

Figure 3 FLS revenue for each population segment and total market share (Rational Inattention) 
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These figures suggest a nuanced consumer decision landscape, where the traveller heterogeneity 

greatly affects the likelihood of choosing the FLS and its expected revenue. The next step of the 

analysis process is to evaluate different pricing strategies from the perspective of the FLS. In 

Figure 2 (Rational Expectations-MNL), the optimal price point is estimated at 10.50 units. At this 

price, the cumulative revenue for both segments is maximized. As such, the optimal strategy 

would entail FLS being competitively priced (4.5 units cheaper that the STS) to attract consumers 

from both segments with a total market share higher than 80%. Contrastingly, in the case of RI 

(Figure 3) the optimal price point is estimated at 12.50 units. This higher optimal price reflects a 

strategic decision of targeting the Price Sensitive travellers for a market share of 40%, as they 

have a higher propensity to select the FLS, even at smaller magnitudes of a pricing discount. 

4. RESULTS AND DISCUSSION 

The above findings lead to the natural question of how increasing the cost of information 

processing and overall transparency affects the market from a policy and regulation perspective. 

As visualized in Figure 4, a sharp decline in FLS revenue and market share is observed as 

information processing cost increases, suggesting that in a market influenced by Rational 

Inattention (RI), larger players with established customer bases could benefit from more opaque 

pricing schemes (prior effect). Thus, from the FLS perspective, there is an initial necessity to 

lower prices to maintain visibility. However, the optimal strategy pivots towards an increase of 

price once a certain threshold of obfuscation is reached, as the FLS service becomes less 

noticeable, thus having to target the “loyal” Price Sensitive segment of the population. 

 

 

Figure 4 FLS optimal pricing, revenue and market share for varying levels of information processing cost 

 

Interestingly, we observe that beyond a certain level of information opacity, smaller market 

players can also build their revenue through the increase of the price. This counterintuitive 

strategy leads to a unique situation where both suppliers could potentially increase their revenues 
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simultaneously by altering the opacity of their pricing schemes. Such a scenario raises concerns 

about regulation, as it suggests the possibility of market manipulation where both providers 

benefit from the implementation of less transparent strategies (obfuscation risk) due to travellers’ 

information capacity constraints. Eventually, when the cost of information becomes too high, FLS 

providers may rely on exploiting consumers with even higher pricing, to balance their already 

diminished market share. They might resort to hidden fees, bundling, or other tactics that could 

result in consumers paying more for less desirable options. These observations emphasize the 

need for regulatory oversight to ensure fair market play and protect consumers from potentially 

manipulative practices (exploitation).  

 

Ultimately, we find that the presence of Rational Inattention among travellers with strong prior 

beliefs results in a significantly inelastic response to price changes. It also becomes evident that 

decoding heterogeneous populations and how they are affected by the cognitive costs of 

processing information is key in the formulation of robust pricing strategies.  

5. CONCLUSION 

The proposed approach for studying transport revenue management opens several directions for 

further exploration. Firstly, we have assumed that the Standard Service (STS) adheres to a fixed 

fare structure, remaining unresponsive to the pricing strategies employed by the Flexible Service 

(FLS). A natural extension of this research would involve examining the various equilibrium 

states that could emerge, considering mutual pricing adjustments and other dynamics, such as the 

evolution of consumers’ prior beliefs. Moreover, the discrepancies in the pricing and revenue 

management strategies that we have uncovered necessitate empirical validation. Applying the 

methodology to real-world data will help ascertain which behavioural theory more closely aligns 

with travellers’ rationale. Lastly, to tackle the inherent complexity of larger scale optimization 

problems under Rational Inattention, it will be essential to employ advanced analytical 

techniques, designed specifically to address the non-linearity challenges, as been done 

successfully in the case of Random Utility models.  

 

In conclusion, by integrating Rational Inattention into the analysis of revenue management, we 

demonstrate that traditional neoclassical models applied in transportation research may not 

adequately capture the dynamics of a market that includes heterogeneous consumers acquiring 

noisy information signals. Ultimately, this interplay between market behaviour and information 

costs underscores the potential need for regulatory oversight to protect travellers’ interests and 

prevent pricing and market manipulation. 
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