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Short summary

Should governments invest in high-speed rail? Do improvements in the conventional railway
network deliver better value for money? This dilemma is among the leading themes of transport
policy in many countries around the world, including the US, the UK, China, and several member
states of the EU. In this paper we argue that the debate on railway policy should not be degraded
into a binary decision between high-speed and conventional rail: we treat speed as a continuous de-
cision variable in the optimisation of intercity transport provision, together with service frequency,
pricing, and the level of public funding. Among several other policy-relevant results, we derive an
analytical optimality rule for the welfare maximising speed and explore its interplay with service
frequency and marginal cost pricing in a series of numerical simulations. Under a reasonable set
of parameters, the model reveals previously unseen characteristics of optimal public transport pro-
vision: when speed is endogenous, the optimal frequency decreases with demand, and high-speed
services are associated with higher fares to ensure the e�cient use of resources.

Keywords: high-speed rail; pricing and capacity optimization; subsidies; transport economic
and policy

1 Introduction

The commercial speed of passenger rail services varies on a wide range between trams travelling
at the speed of a cyclist in dense urban areas and high-speed trains that may reach 360 km/h or
more in daily operations. This is a unique feature of railways. The speed of road-based public
transport is limited by tra�c conditions and strict safety regulations that are standard around
the world, and commercial aircraft's cruising speed is also bounded into a narrow interval by
aerodynamic e�ciency. By contrast, railways do not share the right of way with other modes, and
technology enables safe and e�cient operations at any speed within the range indicated above,
especially if interactions with the built and natural environment are mitigated with dedicated
infrastructure.

Policy debates about the speed of new railway infrastructure are intense in many countries. Such
debates often simplify into a binary choice between loosely de�ned high-speed and conventional rail
technologies.1 Recent examples include HS2 in the United Kingdom (Vickerman, 2018), the rapid
expansion of the high-speed rail network in China (Liu et al., 2023), and several mature plans to
launch high-speed rail in the US (Button, 2012), including Florida and California.

Speed is the basis of a signi�cant part of the user bene�ts in terms of the value of time savings.
There has been a continuing attempt to increase the maximum speeds on high-speed rail lines as
a means of creating greater user bene�ts albeit at the expense of higher costs. However, running
speed is not the only determinant of service quality, and little is known about the interplay between
velocity and other economic characteristics of rail service supply. The backbone of the literature
of mass transit economics considers service frequency (Mohring, 1972; Chang & Schonfeld, 1991)
and vehicle size (Jansson, 1980; Jara-Díaz & Gschwender, 2003) as key variables representing
technological decisions in service provision, and investigates their impact on optimal pricing and

1High-speed and conventional rail are sometimes distinguished by the threshold speed of 200 km/h in
engineering practice. The terminology very high-speed rail is sometimes used for services above 250 km/h.
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subsidies (Börjesson et al., 2017; Hörcher & Graham, 2018). Travel times are sometimes endogenous
with respect to stop spacing and demand, to capture the duration of boarding and alighting (Sun
et al., 2014). Mixed tra�c models with a congestion interaction between cars and public transport
are also regular in the literature (Tirachini et al., 2014; Hörcher & Tirachini, 2021).

The speed of movements between stops is rarely treated as a standalone decision variable in
existing public transport studies. To the best of our knowledge, the only exception is a paper by
Tirachini & Hensher (2011) in which they consider running speed as an explicit policy outcome
linked to the level of infrastructure investment in urban bus transport. As part of an extensive
numerical simulation model, they �nd that speed is an increasing concave function of demand
within the range of 30 to 70km/h. The more pronounced role of velocity in rail service provision
motivates us to investigate the economics of speed more systematically by (i) deriving the analytical
rule of the welfare-maximising speed and (ii) uncovering the link between commercial speed, service
frequency, vehicle size, and the welfare economic and �nancial performance of public transport
provision.

Speed has a crucial impact on several components of standard public transport models. Natu-
rally, in-vehicle travel time savings can be realised by increasing the train speed. Also, due to the
endogeneity of cycle times, the �eet size required to provide a given service frequency decreases
with speed. On the other hand, the unit cost of capacity increases with commercial speed due
to technological complexity, energy consumption, and externalities such as noise. These intuitive
insights suggest that the socially optimal speed is a non-trivial function of (i) demand conditions
and user preferences, (ii) technological parameters, (iii) the �nancial constraint imposed on the
operator, and (iv) substitution with and pre-existing distortions in competing modes, e.g. aviation.

In this research we construct a microeconomic model of intercity transport supply in which the
speed of service provision appears as an explicit supply-side variable.

2 Methodology

Let us consider a public transport (e.g. railway) service between an origin and a destination
station, with no intermediate stops. The service covers a travel distance d within t hours, such
that the average velocity is de�ned as v = d/t. In this model we neglect vehicle dynamics including
the acceleration and deceleration of trains,2 and assume that v, which is an average speed in reality,
is the only velocity-related decision variable in the design problem. The cycle time of this service
is

σ(v) = 2t(v) + t0 =
2d

v
+ t0, (1)

where t0 is an exogenous dwell time at the two terminals, capturing the time required for boarding
and alighting and any technological processes before the train departs in the opposite direction.
We express service frequency f as the number of train departures per hour, so that h = f−1 is the
headway between consecutive departures. The �nal design variable we consider in the analysis is
vehicle capacity: s = ωQ/f , in which Q is total hourly demand in both directions of the origin-
destination pair, and ω > 0.5 is the share of the busier market in total demand.

Cycle time and service frequency are the two determinants of the minimum �eet size (F ) along
the line:

F = σ/h = σf =

(
t0 +

2d

v

)
f. (2)

Figure 1 illustrates the feasible combinations of service regularity (measured by the headway be-
tween consecutive departures) and travel speed, keeping �eet size F �xed. The visualisation con-
�rms that higher velocity enables more frequent services with a given �eet size, but the incremental
headway bene�t diminishes in speed as well as frequency itself. Several results in subsequent parts
of the analysis will be rooted in these implicit properties of scheduled transport operations.

Speed has numerous impacts on both user and operator costs, and the aim behind the opti-
misation of velocity is to �nd the right trade-o� between these costs. Let us de�ne a social cost
function composed of three additive elements.

C(Q, v, f, F, s) = Ck(v, F, s) + Co(v, f, s) +Q · cu (h(f), t(v)) (3)

2For a more detailed engineering analysis of speed, vehicle dynamics and energy e�ciency, see X. Li &
Lo (2014).
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Figure 1: Feasible headway-velocity combinations with a �eet of 1, 2, and 3 trains. Pa-

rameters: d = 200 km, α = $20 per hour, αw = $10 per hour, t0 = 15 min.

In equation (3) we indicate the functional dependencies between cost components and the design
variables introduced above. Ck(v, F, s) denotes the capital cost of service provision. The full paper
includes mathematical formulae; in this short version we describe the speci�cation verbally:

� Capital cost is split between infrastructure provision3 and �eet management:
Ck(v, F, s) = d · ρ(v) + F · ck(v, s)

� The operator's expenditure depends on vehicle kms and the speed and size of trains:
Co(v, f, s) = 2df · co(v, s)

� The total user cost is the sum of in-vehicle time and schedule delay cost:
cu(h(f), t(v)) = α t(v) + αs h

β ,

Note that a trade-o� between headway and velocity exists in the user's perception as well. Let us
compute isocost curves on the headway-velocity space along which the user cost function remains
constant. Figure 2 depicts three such isocost curves for a set of parameters provided in the �gure's
caption. Relatively slow but frequently scheduled service can sometimes be just as convenient as
a very fast but rarely available alternative.

3 Results and discussion

The cost functions de�ned above are suitable to quantify the cost implications of the choice
of speed, frequency and vehicle size, keeping demand (Q) parametric. Even though demand is
parametric, the cost minimisation exercise enables us to perform additional analyses of welfare-
oriented pricing decisions and the �nancial performance of service provision, without specifying an
explicit demand system. Microeconomic theory suggests that travellers perceive the social surplus
maximising monetary incentive when they are required to pay the net marginal social cost of their
trip minus the user cost they already bear (Small & Verhoef, 2007; Czerny & Peer, 2023). Let us
call this quantity the marginal non-personal cost of travelling to distinguish it from the derivative
of the total social cost, ∂C/∂Q. The marginal non-personal cost is then

∂C(·)
∂Q

− cu(·) =
∂Ck(·)
∂Q

+
∂Co(·)
∂Q

+Q
∂cu(·)
∂Q

, (4)

which is the sum of the capital, operational and external user cost induced by the marginal trav-
eller. Another key point of microeconomic theory is that the e�ciency-maximising monetary

3The cost of infrastructure provision may include new construction as well as the volume of non-
expansion capital expenditure on renewals; see an economic model of the latter in Xuto et al. (2021).
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Figure 2: Users' isocost curves in the headway-velocity space. Passengers perceive the

same user cost at any combination of service frequency and average travel speed along the

isocost curve. Parameters: d = 200km, α = $20 per hour, αs = $5 per hour, β = 0.9

incentive (fare) is the short-run marginal non-person cost, that is, the cost directly attributed
to the incremental trip. Let us enlist three alternative assumptions that may a�ect our analysis
fundamentally:

1. Capacity (including speed, frequency and vehicle size) are completely �xed in the short
run. In this case capacity shortages emerge in response to marginal changes in demand. If
capacity imposes a strict limit in the form of a vertical supply function, the role of pricing
is keep demand at the capacity limit. This case might be highly relevant for existing rail
services running on existing infrastructure. However, as this case is not relevant from the
viewpoint of the optimisation of speed, we do not perform analysis under this assumption.

2. Speed is predetermined along an existing rail line, but the operator is able to adjust service
frequencies as part of a short-run timetable reform. Thus, the marginal social cost fare
includes the capital and operating cost of marginal frequency adjustment.

3. Assume that we are in the planning phase of a new rail service, such that all capacity
variables, including speed, are endogenous in the model. The planner's aim is to set the fare
equal to the full expression in (4).

4. As a speci�c case of assumption 3, assume that service frequencies are predetermined by a
network-wide cyclical timetable but a speci�c railway line is under a short-run infrastructure
overhaul. Speed is re-optimised for the estimated level of demand. Thus, the marginal
social cost in (4) includes the capital and operating cost of speed adjustment, but frequency
adjustment is excluded.

Due to the length limit of this short paper, we provide results for case 3 only which is often referred
to as unconstrained strategic design (Jara-Díaz et al., 2023).

The �rst-order condition of the optimal speed yields the following optimality rule:

v =

√
αQ+ 2fck

ρ′(v) + F
d

∂ck
∂v + 2f ∂co

∂v

. (5)

A key message of this cost-minimising speed rule, formerly not shown in the literature, is that the
optimal velocity of a rail service depends on the volume of travellers on the line. This message ques-
tions some of the in�uential policy decisions in the long-distance rail market where public bodies
often try to standardise the design speed of new rail infrastructure throughout their jurisdictions.
We observe nation-wide regulations in this spirit.4

4See, for example, the uniformity of speed on the newly built high speed rail networks of China,
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Figure 3: Social cost-minimising capacity policy with endogenous velocity
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Figure 4: Approximation of the social surplus maximising fare and cost recovery ratios

under optimal supply; endogenous velocity

The optimal velocity rule shows close similarity with the previously known versions of the
optimal frequency rules in the public transport literature in the sense that the optimum increases
with a function of the square root of demand. This is not surprising given that both f and v
enter the user cost function in a reciprocal form: waiting time depends on the headway, f−1,
while travel time is also inversely related to speed through t = dv−1. As a consequence, after
taking derivatives, the rearrangement of �rst-order conditions leads to square-root formulae in
both cases. Interestingly, the demand-dependency of frequency has received much more attention
in the literature since the seminal contribution of Mohring Mohring (1972), while common-sense
intuition suggests that travel speed is not less important in the perception of users, at least in the
long-distance rail context. By numerically simulating the speed rule we show in the rest of this
section that the optimisation of speed replicated several properties of the well-known Mohring rule,
including scale economies in various cost components.

The two panels of Figure 3 visualise the numerical solutions of minv,fC(v, f, s, F ). Panel (b)
con�rms that speed is a positive concave function of demand. With the model parameters and
demand interval considered, the optimal speed varies on a wide range. From a policy point of view
this implies that in a national railway network in which demand intensity varies due to the unequal
spatial distribution of economic activity, it is di�cult to justify a fully homogeneous (standardised)
speed for rail services.

and Spain in Europe, and the EU-wide regulation that conventional rail reconstruction must enable a
commercial speed of 160km/h.
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Panel (a) is even more surprising in light of the existing literature of public transport supply.
More speci�cally, Mohring's well-known frequency formula prescribes that frequency should be
proportional to the square-root of demand Mohring (1972), and this �nding has remained con-
sensual in the past half century Hörcher & Tirachini (2021). Results not included in this short
paper indicate that the `square root principle' does hold in our model as well � as long as we
keep velocity �xed. By contrast, when velocity becomes endogenous, the optimal frequency is a
decreasing function of demand, meaning that Mohring's famous rule is no longer applicable.

The combination of the optimal speed and frequency variables suggests strong substitution
between the two supply-side variables. Higher speed enables the operator to maintain, and even
reduce, the average user cost, and realise capital and operating cost savings by operating a smaller
�eet of larger vehicles. The precondition of this strategy is to have su�cient demand intensity on
the line. In low-demand markets, high speed does not generate su�cient user bene�ts and large
vehicles would imply ine�ciently low frequency and long wait times.

In the �nal part of this section we infer how e�cient pricing decisions and pro�tability are
a�ected by the endogeneity of speed. Panel (a) of Figure 4 shows that the marginal non-personal
cost, our proxy for the optimal fare, increases with Q. This suggests that high-demand (and thus
high-speed) markets should be more expensive than low-demand counterparts � at least when
speed has been set through an endogenous optimisation process. Panel (b) shows that the overall
relative �nancial performance of the service improves with demand, but the improvement in cost
recovery is milder with endogenous speed, as compared to �xed-velocity scenarios.

4 Conclusions

In this research we construct a microeconomic model of intercity transport supply in which
the speed of service provision appears as an explicit supply-side variable. In a series of supply
optimisation exercises, we show analytically and through a numerical example that the socially
optimal speed is an increasing (concave) function of the intensity of demand. The paper re�ects on
the previous literature of mass transit economics by analysing the optimal frequency pattern with
responsive velocity: we show that Mohring's well-known `square-root principle' does not hold in
this case and the optimal frequency actually decreases with hourly passenger demand. In practical
terms, this means that thick intercity rail markets should be served at higher speed but lower
frequency, compared to less densely used lines where the combination of lower speed and higher
frequency appears more e�cient.

The paper reveals some of the fundamental mechanisms of long-distance rail service provision.
The model we develop is simple to keep the results tractable. The analysis neglects various network
e�ects, including �uctuations of demand along a rail line and the dependence of intermediate stops
on train speed. We also neglect interactions with heterogeneous rail tra�c, including freight �ows
(S. Li et al., 2023), and the timetabling problem beyond the choice of frequency. Market structure
is stylised as we assume a welfare maximising monopolist � the choice of speed might be a�ected by
competitive interactions in a liberalised railway market. Yet another limitation is the static nature
of the analysis: railway infrastructure and rolling stock investments last for decades and the pattern
of growth in demand over this time span is often uncertain. This implies that supply optimisation
based on a short-run demand prediction may underestimate the optimal velocity during the entire
life-cycle of the service.
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