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Short summary

Traffic demand has been increasing continuously and presents a substantial challenge to the effi-
ciency of traffic control strategies. Meanwhile, the operation of transportation systems is widely
believed to display fragile properties, i.e., the loss in performance increases exponentially with
the linearly increasing magnitude of disruptions. Currently, the risk engineering community is
embracing the novel concept of (anti-)fragility, which enables systems to learn from historical dis-
ruptions and exhibit improved performance as disruption levels reach unprecedented magnitudes.
In this study, we demonstrate the fragile nature of road transportation systems under demand or
supply disruptions. First, we conducted a rigorous mathematical analysis to establish the fragile
nature theoretically. Then, by considering real-world stochasticity, we implemented a numerical
simulation to bridge the gap between the theoretical proof and the real-world operations. This
work aims to help researchers better comprehend the necessity to consider antifragile design for
the application of future traffic control strategies.
Keywords: (anti-)fragility, road transportation systems, macroscopic fundamental diagram, model
stochasticity.

1 Introduction

As reported by the U.S. Department of Transportation, motorized road traffic before the pan-
demic has experienced an approximate 50% growth over the past few decades. This continuous
growth in traffic volume has consequently contributed to a rise in disruptive events, such as severe
congestion and more frequent accidents. Meanwhile, there is a common understanding that road
transportation networks can exhibit fragile properties. Fragility signifies a system’s susceptibility
to exponentially worsening performance as disruptions increase in magnitude. One prominent ex-
ample is the BPR function, which distinctly illustrates that travel time grows exponentially with
traffic flow with empirical data at the link level.
Therefore, we introduce the cutting-edge concept of (anti-)fragility to explain this phenomenon.
The concept of (anti-)fragility was initially proposed by the famous essayist, and mathematical
statistician, Nassim Taleb, in his bestseller Antifragile: things that gain from disorder and math-
ematically elaborated in Taleb & Douady (2013). It serves as a general concept aimed at trans-
forming people’s understanding and perception of risk. With antifragility, systems and people
can benefit from disruptions and perform better under growing volatility and randomness. Ever
since being proposed, antifragility has gained popularity in the risk engineering community across
multiple disciplines, such as economy, biology, energy, and robotics.
As demonstrated by the BPR function, previous studies discussing this fragile response have pri-
marily relied on intuitive reasoning and empirical data rather than rigorous mathematical analysis.
This paper serves as a proof of concept, aiming to establish the fragile nature of road transporta-
tion systems through mathematical analysis. On the microscopic level, we select the two most
representative Fundamental Diagrams (FDs), the numerical second-degree polynomial FD intro-
duced in Greenshields et al. (1934) and the analytical one in Daganzo (1994) characterized by two
linear functions. On the macroscopic level, we also apply one numerical third-degree Macroscopic
Fundamental Diagram (MFD) as introduced in Geroliminis et al. (2013) and the analytical MFD
generated through Method of Cuts (MoC) as in Daganzo & Geroliminis (2008). Additionally, as
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stochasticity prevails in transportation systems in the real world, we designed a numerical simu-
lation considering real-world stochasticity to study to what extent such realistic uncertainties can
influence the fragile characteristics of transportation systems. The overarching objective of this
paper is to provide insights to transportation researchers for the future design of transportation
systems and control strategies to be not only robust and resilient but also antifragile.

2 Problem formulation

An (anti-)fragile response of a system can be characterized through a nonlinear relationship be-
tween the performance loss and the magnitude of the disruption, as shown in Fig. 1(a). Both
nonlinear functions can be represented by Jensen’s inequality, with either E[g(X)] ≥ g(E[X]) for
a fragile response or E[g(X)] ≤ g(E[X]) for an antifragile response. This relationship can then
be determined through the second derivative, i.e., a positive second derivative featuring a convex
function and hence a fragile system.
However, in most real-world scenarios, the mathematical function of the system is unknown, and
only discrete measurements of the system’s performance are available. In this case, we can calculate
the distribution skewness to determine the (anti-)fragile property of the system, and a negative
skewness indicates an antifragile response, as shown in Figure 1(b).

(a) Nonlinear relationship (b) Distribution skewness

Figure 1: Characteristics and identification of (anti-)fragility

In this paper, we address three sets of opposing concepts for the analysis:

- microscopic / macroscopic
- demand disruption / supply (MFD) disruption
- onset of disruption / recovery from disruption

A demand disruption can be surging traffic due to social events, whereas a supply disruption
may indicate a compromised network performance due to adversarial weather or lane closure.
Additionally, we consider both the onset of disruptions and the recovery process, as illustrated
in Figure 2(a) and 2(b). We denote the FD/MFD profile as G(k) and assume a constant base
demand in the network as q. The initial density, critical density, the new density after disruption,
and the gridlock density are donated as k0, kc, k′, and kmax. For supply disruption, we introduce
a disruption magnitude coefficient r so that the disrupted MFD profile can be represented as
(1− r)G(k). On the network level, MFD can also be represented with vehicle accumulation - trip
completion instead of traffic flow - density. Hence, with vehicle accumulation denoted as n, G(k∗)
can also be replace with G(n∗).
Several assumptions need to be established to define the scope of our study. A critical condition to
avoid is the network succumbing to a complete gridlock, where recovery is not possible anymore.

1. For demand disruptions, k′ > kc, whereas for supply disruptions, k′ < kc.
A surging demand is considered a disruption only when its presence leads to a reduction
in the network’s serviceability. For supply disruption with the constant base demand, this
assumption aims to avoid gridlock.

2



(a) Onset and recovery of a demand disruption (b) Onset and recovery of a supply disruption

Figure 2: Onset and recovery of disruptions

2. For demand disruptions, q < G(k′), whereas for supply disruptions, q < (1− r)G(kc).
Likewise, the necessity of this assumption also lies in the avoidance of gridlock for both
demand and supply disruptions.

3. The onset of the disruptions can happen instantaneously, while the recovery from disruptions
is a gradual process.

3 Mathematical proof for the fragility of road transporta-
tion systems

In this section, we conduct mathematical proof to demonstrate the fragile nature of the trans-
portation systems on both the microscopic and the macroscopic levels. In the following study, the
indicator to study the instantaneous disruption onset and between different stable states is the
Average Time Spent (ATS), as ATS is the same for each vehicle that entered the network. On the
other hand, for the study of the disruption recovery, we use Total Time Spent (TTS), to better
reflect the overall temporal costs of all the vehicles in this process.
To illustrate the system’s fragility to demand disruption, we analyze the derivatives of time spent
relative to the initial disruption demand, either represented by disruption density k′, or disruption
vehicle accumulation n′. For supply disruptions, establishing a positive second derivative of time
spent concerning the magnitude of MFD disruption r would demonstrate the fragility. After the
supply disruption, the new equilibrium point is q = (1− r)G(k′(r)).

Proposition 1. Road transportation systems are fragile with the onset of demand disruptions on
the microscopic level.

Proof. For the Greenshields FD, the following equations describe traffic in a stable state. The
traffic flow, density, and speed are denoted as q, k, and v respectively, while a and b are polynomial
coefficients.

G(k) = ak2 + bk (1)

v(k) =
q

k
= ak + b (2)

With the sudden onset of a demand disruption k′, for a link with a given length of L, the ATS and
its first and second derivatives over such disruption are:

ATS =
L

v(k′)
=

L

ak′ + b
(3)

dATS

dk′
= −aL(ak′ + b)−2 (4)

d2ATS

dk′2
= 2a2L(ak′ + b)−3 (5)
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While a is negative, ak′ + b has a physical meaning of the average speed and should always be
non-negative, thus, the derivatives are positive, indicating a fragile response.
In the Daganzo two-regime FD, the speed can be formulated as the following Eq. 6.

v(k) =

{
vf , 0 ≤ k < kc

w + c
k , kc ≤ k ≤ kmax

(6)

When the disruption density k′ is below the critical density kc, the ATS and its derivatives are:

ATS =
L

vf
(7)

dATS

dk′
= 0 (8)

d2ATS

dk′2
= 0 (9)

It indicates the traffic states before kc are neither fragile nor antifragile. However, as per Assump-
tion 1, the congested area of the MFD is the study focus for demand disruptions, now we calculate
the derivatives when k′ is over kc:

ATS =
L

v(k′)
=

L

w + c
k′

(10)

dATS

dk′
=

cL

(wk′ + c)2
(11)

d2ATS

dk′2
=

−2wcL

(wk′ + c)3
(12)

Before k′ reaches kmax, wk′ + c > 0 always holds true, and since w < 0 as well as c > 0, both
derivatives are positive.

Proposition 2. Road transportation systems are fragile with the onset of demand disruptions on
the macroscopic level.

Proof. For MFD approximated with a third-degree polynomial, similar to the Greenshields FD in
Eq. 1, we have:

G(k) = ak3 + bk2 + ck (13)

v(k) =
q

k
= ak2 + bk + c (14)

Consequently, the ATS and its derivatives are:

ATS =
L

v(k′)
=

L

ak′2 + bk′ + c
(15)

dATS

dk′
=

−(2ak′ + b)L

(ak′2 + bk′ + c)2
(16)

d2ATS

dk′2
=

3
2 (2ak

′ + b)2 + 1
2 (b

2 − 4ac)

(ak′2 + bk′ + c)3
L (17)

As Eq. 14 should have real roots, indicating the speed to be a real number, so b2 − 4ac > 0 should
also hold. Therefore, the derivatives are positive.
In MoC, the MFD can be approximated by a series of linear functions. Likewise to the Daganzo
two-regime linear FD as in Eq. 12, for any linear function, the second derivative is:

d2ATS

dk′2
=

−2uiciL

(uik′ + ci)3
(18)

Conforming to Assumption 1, we focus on the cuts with intercepts larger than the critical density
kc (ui < 0). The second derivative for these cuts is positive indicating a fragile property.
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Proposition 3. Road transportation systems are fragile when going through the recovery process
from demand disruptions.

Proof. According to Assumption 3, we consider this demand as a disruption that happens instantly
in the network, which is denoted as n′ at time t′ = 0. The complete MoC can be represented into
multiple sets of consecutive duo linear functions as Figure 3 shows. The four constants a1, a2, b1,
and b2 are the slope and y-intercept on the coordinates, with a2 > a1 and b1 > b2 > 0. After a
certain period tc, the number of vehicles in the network reaches this critical accumulation nc of
these two cuts. After any period t > tc, the vehicle accumulation becomes n. We also denote the
initial trip completion and critical trip completion as m0 = a1n

′+b1 and mc = a1nc+b1 = a2nc+b2
respectively.

Figure 3: Simplification of MoC

Any two consecutive cuts of the MFD can be formulated into the following Eq. 19:

G(n) =

{
a1n+ b1, nc ≤ n < nmax

a2n+ b2, 0 ≤ n < nc

(19)

The system dynamics can be summarized as:

dn

dt
= −G(n) + q = −ain− bi + q (20)

When the traffic states stay only on a single branch, and given any initial vehicle accumulation n1

at the beginning of a period from t1 to t2, the number of vehicles n2 at the end of this period can
be determined as:

∫ t2

t1

dt = −
∫ n2

n1

1

ain+ bi − q
dn (21)

t2 − t1 = − 1

ai
ln

(
ain2 + bi − q

ain1 + bi − q

)
(22)

n2 =
e−ai(t2−t1)(ain1 + bi − q)

ai
− bi − q

ai
(23)

With the disruption accumulation n′, and the traffic states are on the same branch. After any
time t, the vehicle accumulation n would be:

n =
a1n

′ + b1 − q

a1
e−a1t − b1 − q

a1
(24)

The TTS can be calculated as:

TTS =

∫ t

0

ndt =

∫ t

0

(
a1n

′ + b1 − q

a1
e−a1t − b1 − q

a1

)
dt (25)

= −a1n
′ + b1 − q

a21
e−a1t − b1 − q

a1
t+

a1n
′ + b1 − q

a21
(26)
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Now we calculate the derivatives of TTS considering t as any constant.

dTTS

dn′ =
1

a1
− e−a1t

a1
(27)

d2TTS

dn′2 = 0 (28)

The second derivative of TTS is 0, indicating that when the traffic states move only along a single
branch, it shows neither fragility nor antifragility.
When the traffic state goes over the critical vehicle accumulation nc, we calculate the TTS sepa-
rately on both the more and the less congested branches, denoted as TTS1 and TTS2. Since the
critical time tc is still unknown, we need to determine tc first, similar to Eq. 22.

tc = − 1

a1
ln

(
a1nc + b1 − q

a1n′ + b1 − q

)
(29)

tc = − 1

a1
ln

(
mc − q

a1n′ + b1 − q

)
(30)

Likewise to Eq. 26, the TTS1 for the more congested branch is:

TTS1 = −a1n
′ + b1 − q

a21
e−a1tc − b1 − q

a1
tc +

a1n
′ + b1 − q

a21
(31)

= −mc − q

a21
+

b1 − q

a21
ln

(
mc − q

a1n′ + b1 − q

)
+

a1n
′ + b1 − q

a21
(32)

Since TTS is the sum of both TTS1 and TTS2, the second derivative of TTS would also be the
sum of the derivatives. The derivatives for TTS1 are:

dTTS1

dn′ = −b1 − q

a1
(a1n

′ + b1 − q)−1 +
1

a1
(33)

d2TTS1

dn′2 = (b1 − q)(a1n
′ + b1 − q)−2 (34)

According to Eq. 23, the vehicle accumulation on the less congested branch from tc to t would be:

n =
e−a2(t−tc)(a2nc + b2 − q)

a2
− b2 − q

a2
(35)

=
ea2tc(mc − q)

a2
e−a2t − b2 − q

a2
(36)

The TTS2 for the less congested branch would be:

TTS2 =

∫ t

tc

ndt =

∫ t

tc

(
ea2tc(mc − q)

a2
e−a2t − b2 − q

a2

)
dt (37)

= −e−a2t(mc − q)

a22
ea2tc +

b2 − q

a2
tc +

mc − q

a22
− b2 − q

a2
t (38)

The derivatives on the less congested branch are:

dTTS2

dn′ = − (mc − q)1−
a2
a1 e−a2t

a2
(a1n

′ + b1 − q)
a2
a1

−1 +
b2 − q

a2
(a1n

′ + b1 − q)−1 (39)

d2TTS2

dn′2 = −

(
(a2 − a1)(mc − q)1−

a2
a1 e−a2t

a2
(a1n

′ + b1 − q)
a2
a1 +

a1(b2 − q)

a2

)
(a1n

′ + b1 − q)−2

(40)

As per Assumption 2, m0 − q > 0 holds. The second derivative of the whole process would be:
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d2TTS

dn′2 =
d2TTS1

dn′2 +
d2TTS2

dn′2 (41)

=

(
b1 − q − e−a2t

a2
(a2 − a1)(mc − q)1−

a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2

)
(m0 − q)−2 (42)

Since m0 − q > 0, and if a transportation system is to be fragile, d2TTS
dn′2 should also be positive,

and the following equation has to be true:

b1 − q − e−a2t

a2
(a2 − a1)(mc − q)1−

a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2
> 0 (43)

As t > tc and a2 > a1, regardless of whether a2 is positive or negative, the following relationship
always holds:

−e−a2t

a2
> −e−a2tc

a2
(44)

As the following three terms, a2 − a1, (mc − q)1−
a2
a1 , and (m0 − q)

a2
a1 are all positive, the following

relationship is true:

b1 − q − e−a2t

a2
(a2 − a1)(mc − q)1−

a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2
> (45)

b1 − q − e−a2tc

a2
(a2 − a1)(mc − q)1−

a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2
(46)

Here we substitute the tc in Eq. 46 with Eq. 30 and get:

b1 − q − (a2 − a1)(mc − q)

a2
− a1(b2 − q)

a2
= (47)

a1

(
b1 −mc

a1
− b2 −mc

a2

)
= a1(nc − nc) = 0 (48)

Hence, Eq. 43 is true and the second derivative of TTS is positive.

Proposition 4. Road transportation systems are fragile with the onset of supply disruptions on
the microscopic level.

Proof. For the Greenshields FD, as the base demand q is constant, we have:

q = G(k0) = (1− r)G(k′(r)) = (1− r)(ak′(r)2 + bk′(r)) (49)

So, the traffic density of the new equilibrium point after the MFD disruption would be:

k′(r) =

√
b2 + 4aq

1−r − b

2a
(50)

The ATS and its derivatives are:

ATS =
L

v(k′)
=

Lk′(r)

q
=

L

2aq
((b2 +

4aq

1− r
)

1
2 − b) (51)

dATS

dr
= L(b2(1− r) + 4aq)−

1
2 (1− r)−

3
2 (52)

d2ATS

dr2
=

b2L

2
(b2(1− r) + 4aq)−

3
2 (1− r)−

3
2 +

3L

2
(b2(1− r) + 4aq)−

1
2 (1− r)−

5
2 (53)

As k′ has a physical meaning of disruption density, hence, it should have real roots with b2 + 4aq
1−r

being positive. And because 1− r needs to be positive as well, therefore, d2ATS
dr2 is always positive

and indicates the fragility. Likewise to the proof of demand disruption, the Daganzo FD is a special
case of the MoC, so we directly prove the fragility on the macroscopic level with MoC.
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Proposition 5. Road transportation systems are fragile with the onset of supply disruptions on
the macroscopic level.

Proof. Since the proof of fragility under supply disruption with Geroliminis MFD involves calcu-
lating the roots for cubic equations. For simplicity reasons, we prove only With Daganzo MoC:

q = (1− r)(uk′(r) + c) (54)

k′(r) =

q
1−r − c

u
(55)

The ATS and its derivatives are:

ATS =
Lk′(r)

q
=

L

qu
(

q

1− r
− c) (56)

dATS

dr
=

L

u
(1− r)−2 (57)

d2ATS

dr2
=

2L

u
(1− r)−3 (58)

As per Assumption 1, when studying supply disruptions, we focus on the uncongested zone of the
MFD, meaning the slope of these relevant cuts is positive so that both derivatives are positive.

Proposition 6. Road transportation systems are fragile when going through the recovery process
from supply disruptions.

Proof. To study the possible fragile properties of road transportation networks regarding the re-
covery process from supply disruptions, we need to combine the conclusions from Proposition 3
and Proposition 5. In Proposition 3, we’ve proven d2TTS

dn′2 ≥ 0. Similarly, with a1 > 0 as the branch
is below the critical density for supply disruptions following Assumption 1, we can easily prove
the first derivative dTTS

dn′ to be non-negative as well. Likewise to Proposition 5, replacing q with
un0 + c, we have:

q = un0 + c = (1− r)(un′ + c) (59)

n′(r) =
un0 + c

u(1− r)
− c/u (60)

The derivatives of n′ over the coefficient r are:

dn′

dr
=

un0 + c

u
(1− r)−2 (61)

d2n′

dr2
=

2(un0 + c)

u
(1− r)−3 (62)

Since u and un0+c are both positive, the derivatives of n′ over r are positive as well. Additionally,
it can be easily proven that when considering the transition from a more congested to a less
congested branch, the same conclusion also holds.
As TTS is a function of n′ and n′ is again a function of r, by applying the chain rule, we can get
the second derivative of TTS over r:

d2TTS

dr2
=

d

dr

(
dTTS

dn′ · dn
′

dr

)
(63)

=
d2TTS

dn′2
0

·
(
dn′

dr

)2

+
dTTS

dn′ · d
2n′

dr2
(64)

Since all the four components of the Eq. 64 have been proven to be non-negative. Hence d2TTS
dr2

is also non-negative and we’ve proven the fragile nature of road transportation systems regarding
the recovery process of supply disruptions.
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4 Numerical simulation

In the real world, road transportation systems and MFDs are subject to stochasticity and these
uncertainties cannot be reflected in the above mathematical analysis. Therefore, we show the
impact of realistic stochasticity on the network performance with a numerical simulation of a
congestion recovery process. The MFD of the studied region is created by applying Daganzo MoC
with realistic parameters in the city center of Zurich, for example, free-flow speed, back-propagation
speed, maximal density, and capacity are provided in Ambühl et al. (2020) with queried routes in
Google API. The total and average lane length for District 1 is queried through SUMO. By assuming
the studied region to be homogenous with traffic and signal settings, we introduce stochasticity
in this region with real traffic light data, as the signalization in Zurich is actuated and does not
strictly follow a fixed-time signal cycle. The parameters are summarized in Table. 1.

Table 1: Estimated parameters for the city center of Zurich

Parameters Notation Unit Value

Free-flow speed u0 m/s 12.5
Back-propagation speed w0 m/s 6.0
Maximal density κ veh/m 0.145
Capacity s veh/s 0.51
Total lane length D m 68631
Average lane length l m 167
Average trip length L m 7110
Signal cycle time C s 50
Signal green time (mean) µG s 14.8
Signal green time (std.) σG s 2.5
Offset δ s 0

As the average green time is 14.8 s and the standard deviation is 2.5 s, following Daganzo MoC,
we produce three groups of cuts with green time being µG − σG, µG, or µG + σG, as Fig. 4 shows.

Figure 4: The MFD of the city center of Zurich through MoC

We simulate with different initial disruption demands n′ from 1000 to 8000 vehicles with a constant
simulation time of 5000 seconds. Fig. 5(a) demonstrates that TTS grows exponentially with
linearly increasing n′. Other than these three curves, there are also 500 scattering points with
random n′ forming the blue curve. Each scatter point is composed of a full recovery process. At each
time step, a stochastic signal green time is chosen following normal distribution G ∼ N(14.8, 2.5),
leading to an uncertain MFD profile as Fig. 5(b) shows as an example.
Since the scattering points closely align with the solid curve, the influence of realistic stochasticity
is mostly negligible. However, when the demand is low, the blue curve dips slightly below the solid
curve, whereas it appears to rise above with higher demand. To quantify the fragile response, we
calculate the skewness of distribution, and the skewness is 0.50 when there is no stochasticity while
being 0.53 for the blue curve. As a greater skewness indicates a more fragile system, this means
that by introducing realistic stochasticity, the system becomes even more fragile.
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(a) Demand disruption in the real world (b) Stochasticity on the MFD

Figure 5: Numerical simulation with stochasticity

5 Conclusion

This research systematically demonstrated the fragile nature of road transportation systems with
rigorous mathematical analysis and numerical simulation under realistic stochasticity. The math-
ematical proof comprehends the study of fragility under 1) microscopic - macroscopic, 2) demand
disruption - supply disruption, and 3) onset of disruption - recovery from disruption. With es-
sential assumptions regarding the disruption density in comparison to the critical density as well
as the base traffic demand, we’ve validated the fragility of road transportation systems from vari-
ous perspectives. Furthermore, through a numerical simulation with realistic data, we concluded
that real-world stochasticity has a limited impact on the fragile characteristics of the system but
contributes to rendering the system even more fragile. The fragility observed in urban road net-
works may be extended to various transportation systems. This study aims to offer insights to
researchers, emphasizing the fragile characteristics of transportation systems and encouraging the
design of antifragile traffic control strategies in the future.
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