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Short summary

Traffic congestion has negative impacts on both the individual and social aspects of urban life.
The multi-hop control scheme (MHCS), which recommends users pass through some intermediate
checkpoints (ICs), has shown great potential in alleviating network congestion and enhancing
network efficiency. While MHCS enables users to travel through the shortest routes between ICs
and thus induces lower unfairness compared to other route control schemes, it cannot prevent
non-compliant behaviors of selfish travelers. This study aims to shed light on the impacts of such
behavior on the performance of MHCS. We relax the assumption of full compliance by adding a set
of constraints to the original MHCS problem that define the non-compliance ratio. The numerical
results suggest that, despite the overall negative effect of non-compliance, the ultimate system
performance is largely related to the design of ICs. It was also found that enforcing full compliance
over all travelers may not be worth the total travel time savings in consideration of the trade-off
between fairness and efficiency.

Keywords: Multi-hop control scheme, System optimum, Traffic Management, User compliance,
User equilibrium.

1 Introduction

Urban traffic congestion has been a critical issue in large metropolitan areas for decades, meanwhile
causing huge costs to individuals. A recent report revealed that drivers in the UK wasted an
average of 80 hours in congestion over 2022 (INRIX, 2023). To alleviate traffic congestion, various
approaches have been developed, ranging from demand management (Afrin & Yodo, 2020), to
network capacity expansion (Zhou et al., 2021), to traffic control and route guidance(Jiang et al.,
2024; Huo et al., 2023). Compared to other strategies, the route control and/or guidance schemes
are relatively cheaper and simpler for implementation (Chellapilla et al., 2023). Although they do
not resolve the fundamental imbalance between travel demand and capacity supply, even a few
minutes of improvement for every driver can sum up to a great reduction in total travel time and
thus achieve a substantial social cost saving (Rocha Filho et al., 2020).

A successful routing scheme must strike a good balance between efficiency and fairness. On the
one hand, it should route vehicles to reduce total travel time in the network and ideally, approach
the System Optimum (SO) state (Wardrop, 1952). On the other hand, it should address users’
preferences and ensure their incentives to participate in the routing scheme. The commonly used
benchmark of fairness is the User Equilibrium (UE) state (Sheffi, 1984), where all travelers choose
the shortest paths and thus reach zero unfairness.

Since UE and SO are normally incompatible in a congested traffic network, a series of routing
schemes are developed to achieve a state in between (e.g., Jahn et al., 2005; Vreeswijk et al., 2015;
Zhang & Nie, 2018). In particular, the Multi-hop Control Scheme (MHCS) proposed by Farahani
et al. (2021), designates a set of intermediate checkpoints (ICs) in the network and recommends
a fraction of travelers to pass through one or several ICs before reaching their destinations. To
restrain unfairness, travelers are free to take the shortest routes in each trip segment, referred to as
“hop” hereafter. The numerical results demonstrated the ability of MHCS to make a satisfactory
balance between efficiency and fairness.

The original MHCS assumes full compliance of travelers, which, however, is unlikely to occur in
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real-world scenarios (Kröller et al., 2021). Even with the increasing share of autonomous vehicles
(AVs) that are easier to control compared to human-driven vehicles (Wang et al., 2020), it is
still expected that some travelers may never consent to make a detour to ICs for the social good
(Ringhand & Vollrath, 2018). Therefore, it is essential to investigate the effectiveness of MHCS
without full user compliance, which becomes the main objective of this paper. Previous studies
have drawn important insights into the non-compliant behaviors in route guidance, such as the
impact of users’ familiarity with the network (Bonsall & Parry, 1991) and the clarity of route
recommendations (van Essen et al., 2020). Yet, this paper focuses particularly on the sensitivities
of MHCS towards non-compliant behaviors.

2 Methodology

Preliminary settings

Consider a transportation network denoted by G(N,A), where N is the set of nodes and A the
set of links. Let P ⊆ N and Q ⊆ N denote the set of origins and destinations, respectively, and
W ⊆ P ×Q be the set of OD pairs. We further introduce d = (dw|w ∈ W )T to denote the demand
vector, where each element dw > 0 gives the demand flow between OD pair w = (p, q) ∈ W . In
what follows, we will use dw and dpq interchangeably. For each OD pair w ∈ W , we define Rw as
its corresponding route set, thus the set of all routes in the network is given by R =

⋃
w∈W Rw.

Following the literature, we denote f = (frw|r ∈ Rw, w ∈ W )T as the path flow vector and
v = (va|a ∈ A)T as the link flow vector. Besides, we use Γ ∈ {0, 1}|W |×|R| as the OD-path
incidence matrix (where γwr equals 1 if path r connects OD pair w and zero otherwise) and
∆ ∈ {0, 1}|A|×|R| as the link-route incidence matrix (where δar equals 1 if the route r uses link a
and zero otherwise). Accordingly, the relationship among link flows, path flows, and OD demands
can be stated as d = Γf and v = ∆f , which yields the sets of feasible path and link flows as follows:

Ωf = {f |d = Γf , f ≥ 0} (1)
Ωv = {v|v = ∆f ,d = Γf , f ≥ 0} (2)

We assume that travel cost functions are separable (i.e., the travel time on a link is the function
of the flow on that link only) and that the travel time on a route is the sum of travel times on all
links forming the route. Hence, c = ∆T t. Recalling v = ∆f , we may write the path cost vector as
c = c(f). Consider µw as the least path cost for OD pair w and µ = (µw|w ∈ W )T where

µw = min{crw|r ∈ Rw} ∀w ∈ W. (3)

Therefore, the route flow vector f∗ satisfies the Wardrop’s user equilibrium (UE) condition if and
only if:

f∗
rw > 0 ⇒ crw = µw (4a)
f∗
rw = 0 ⇒ crw ≥ µw. (4b)

The above condition can be stated as an equivalent variational inequality (UE-VI) problem using
path flows: Define a path flow vector f∗ ∈ Ωf such that

c(f∗)T (f − f∗) ≥ 0 ∀f ∈ Ωf . (5)

The above VI problem can also be stated in terms of link flows: Find a link flow vector v∗ ∈ Ωv

such that
t(v∗)T (v − v∗) ≥ 0 ∀v ∈ Ωv. (6)

To refer to the system optimal (SO) solution, let the marginal link cost function be represented
by sa = ta(va) + va

dta(va)
dva

for all a ∈ A. The vector of all link marginal travel times is then
s = (sa(va)|a ∈ A)T . We define the vector of route marginal costs as u = ∆T s including the
elements urw (the marginal cost of route r connecting OD pair w). The corresponding variational
inequality formulation of the SO problem (SO-VI) reads: Define a path flow vector f∗ ∈ Ωf such
that

u(f∗)
T
(f − f∗) ≥ 0 ∀f ∈ Ωf . (7)
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Intermediate checkpoint and demand segmentation

The key novelty of MHCS is the introduction of a set of intermediate checkpoints IC ⊆ N that
split a single trip into multiple segments. From the modeling perspective, this essentially performs
a demand segmentation, which transforms the origin demand vector to a virtual demand with
additional OD pairs induced by ICs. In what follows, we use the prime symbol (′) to identify the
virtual demand and all other variables induced by the virtual demand. Therefore, d′ denotes the
set of virtual demand defined on the set of virtual OD pairs W ′ ⊆ {P ∪ IC} × {Q ∪ IC}, and the
corresponding virtual link and path flow vectors are represented by v′ and f ′, respectively, whose
feasible sets Ω′

v and Ω′
f are defined as per Eqs. (2) and (1) except for replacing d with d′.

Below we provide an example to better illustrate the conception of demand segmentation. Consider
the Nguyen and Dupuis network (Nguyen & Dupuis, 1984) in Fig.1 with a total of d13 travelers
between OD pair (1,3). Suppose a fraction of travelers are recommended to pass through Node
9 before reaching their destinations. This will create two virtual demand d′19 and d′93 under the
demand segmentation. To maintain the flow conservation, the virtual demand must also ensure
d′13 + d′19 = d′93 + d′13 = d13. Now define the matrix of hopping ratios as λ ∈ [0, 1]|W

′|×|W |, where
each element λw′w (or λij,pq) gives the share of virtual demand d′w′ in the original demand dw.
Hence, a compact form of the flow conservation is given by λd = d′.

Figure 1: experimental network of Nguyen and Dupuis

MHCS with non-compliant users

Recall that the ultimate goal of MHCS is to mitigate traffic congestion by recommending ICs to
travelers. In other words, the central planner’s problem is to determine the ICs and hopping ratios
that minimize the total travel time. The selection of ICs, however, is rather complicated as it
involves combinatorial optimization. Hence, in this study, we focus on the optimization of hopping
ratios given predefined sets of ICs. The problem is then formulated as a bi-level program: at the
upper level, the central planner determines the hopping ratios λ in anticipating travelers’ route
choice, while at the lower level, travelers with augmented ICs make route choices to minimize
their own travel time. Since travelers can freely choose any path for each trip segment, the traffic
network will consequently reach the UE state under the segmented virtual demand. To account for
the non-compliance, we introduce an additional constraint in the upper-level problem that ensures
the fraction of travelers without an IC is beyond a certain threshold ρ ∈ [0, 1].
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The relaxed MHCS is formulated as follows:

min
λ

Z(λ) = t(v∗(λ))Tv∗(λ) (8a)

s.t. d′ = λd, (8b)∑
m∈IC∪{q}

λpm,pq = 1, ∀(p, q) ∈ W, (8c)

∑
i∈IC∪{p}

λim,pq =
∑

j∈IC∪{q}

λmj,pq, ∀m ∈ IC, ∀(p, q) ∈ W, (8d)

diag(λ) ≥ ρ, (8e)
0 ≤ λ ≤ 1, (8f)

t(v∗(λ))T (v − v∗(λ)) ≥ 0, ∀v ∈ Ω′
v. (8g)

In Problem (8), Constraint (8b) describes the demand segmentation; Constraints (8c) and (8d)
state the flow conservation at the origin nodes and ICs, respectively; Constraint (8e) expresses
the non-compliance behaviors by asserting that the diagonal elements in λ (i.e., λww,∀w ∈ W )
to be greater or equal than ρ; Constraint (8f) gives the feasibility of hopping ratios; and finally,
Constraint (8g) states the traffic equilibrium condition.

Since the additional non-compliance constraint is simple and linear, Problem (8) shares the same
analytical properties as the original MHCS proposed in Farahani et al. (2021), which is formally
stated in the following proposition.

Proposition 1. If the link cost function vector t(·) is continuously differentiable and increasing
with respect to link flows v, a solution to the relaxed MHCS problem (8) always exists.

Proof. See Farahani et al. (2021).

Solution algorithms

Problem (8) is solved by a sensitivity-analysis-based (SAB) approach following Farahani et al.
(2021). In brief, in each iteration k, we first solve the equilibrium link flow v∗(λk) at the current
solution λk and then approximate the derivatives of link flows with respect to the virtual demand,
also known as the equilibrium sensitivities. The sensitivity approximates are then used to construct
an auxiliary upper-level problem, which is solved by the interior-point algorithm to obtain the
hopping ratio for the next iteration. Recognizing that the initial solution could largely affect the
final results, Farahani et al. (2021) proposed to first solve the SO state and configure the initial
hopping ratios based on the SO path flows. The same algorithm is applied in this study, though a
minor adjustment is made to ensure the initial λ meets the non-compliance constraint Eq. (8e).

3 Results and discussion

The experiments are conducted on the Nguyen-Dupuis network (see Fig. 1), which has been
widely used in the literature to produce insights without computational burden Tan et al. (2024);
Oszczypała et al. (2023). The network parameters are retrieved from Xu et al. (2011) and reported
in Table 1). In total, there are four OD pairs defined in the network: d12 = 660, d13 = 495, d42 =
412.5, and d43 = 495.

The performance of MHCS is evaluated using three metrics: (i) the network total travel time
(TT ), (ii) the UE-based unfairness (TUUE), and (iii) the perceived unfairness (TUP ). Specifically,
the UE-based unfairness compares the path travel times under MHCS to those at UE, and the
perceived unfairness compares the realized and shortest path travel times under MHCS. Therefore,
the former quantifies how much unfairness would be induced by MHCS compared to the status quo,
while the latter indicates how likely selfish travelers would deviate from the route recommendation.

The three metrics are mathematically defined as follows:

TT = t(v)Tv, (9a)

TUUE = (c− µUE)
T
+f , (9b)

TUP = (c− µ)T f , (9c)
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Table 1: Parameters of Nguyen-Dupuis Network

Link Free-flow travel time Capacity Link Free-flow travel time Capacity

1 7 300 11 9 500
2 9 200 12 10 550
3 9 200 13 9 200
4 12 200 14 6 400
5 3 350 15 9 300
6 9 400 16 8 300
7 5 500 17 7 200
8 13 250 18 14 300
9 5 250 19 11 300
10 9 300

where µUE denotes the vector of shortest path travel times at UE. The operator (x)+ = max{0,x}
keeps the positive elements in the vector x, thus the UE-based unfairness is always positive.

Full-compliance MHCS with a single IC

We first solve the original MHCS with a single IC, which provides insights into the design of IC
sets in the following experiments. Thanks to the small network scale, we are able to enumerate all
possible ICs and solve the MHCS with full user compliance for each case. The results are shown
in Fig. 2. As seen, Nodes 9 and 10 save the most total travel time while Node 10 contributes to
a lower level of unfairness, particularly the perceived unfairness. On the other hand, Nodes 8 and
13 induce the minimum unfairness, though they are not effective in reducing congestion.

(a) Total travel time (b) Total UE-based and perceived unfairness

Figure 2: Results of MHCS with a single IC.

Impact of user compliance on MHCS

Based on the above results, we proceed to design two sets of ICs (see Table 2). Both sets include
Node 9, which has been shown to bring the highest system efficiency, Node 8, which leads to the
best fairness, and Node 7, which strikes a good balance between efficiency and fairness. The set
“R-6” is further augmented with three more nodes following the same rationale. In the experiments,
we also vary the non-compliance rate ρ from zero, where all travelers follow the route guidance, to
one, where the system reduces to UE. The results are shown in Fig. 3.

Table 2: Two formations of intermediate checkpoints (ICs) for non-compliance experiments.

Formation Intermediate Checkpoints (ICs)

R-3 7, 8, 9
R-6 5, 7, 8, 9, 10, 13
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(a) Total travel time (b) UE-based unfairness

(c) Perceived unfairness

Figure 3: Efficiency and unfairness under MHCS against non-compliance rate.

As expected, the total travel time increases with the non-compliance rate under both IC sets.
Besides, with full compliance, R-6 archives more travel time savings compared to R-3 thanks to
the extra ICs, though the extra improvement is quite limited. However, the two IC sets behave
quite differently in handling the non-compliance. Specifically, R-6 shows a higher capability in
managing the selfish behavior of travelers and maintains the network efficiency close to the full-
compliance state even though half of travelers disregard the route recommendations. However, it
suddenly loses its effectiveness when the non-compliance rate goes beyond a threshold. On the
other hand, R-3 is more sensitive to non-compliant behaviors and loses network efficiency in an
incremental manner.

A similar trend, though in the opposite direction, is observed in the unfairness measures. As ρ
increases, the unfairness declines gradually in R-3 but suddenly in R-6 as it reaches the threshold.
Some other findings are also worth noting. First, a large set of ICs does not necessarily yield higher
unfairness under full compliance. As shown in Figs.3 (b) and (c), while R-6 leads to higher perceived
unfairness, its UE-based unfairness is less intense than R-3. Nevertheless, R-6 in general incurs
more unfairness than R-3 over the various non-compliance rates. Another interesting observation
is that perceived unfairness is generally larger than UE-based unfairness. This result implies that
MHCS may cause large variations in path travel times, which imposes a risk on compliance in
practice.

It is also worthwhile to investigate how the average number of ICs visited by each traveler (AVIC)
varies with the non-compliance rate. The results are illustrated in Fig. 4. As expected, AVIC
decreases with the non-compliance rate and R-6 tends to pass more travelers through ICs than
R-3. Note that, in R-6, as the non-compliance rate increases from 10% to 50%, AVIC declines by
about 40% whereas the total travel time remains almost unchanged as shown in Fig. 3(a). This
observation implies that the system might be over-controlled within this range. Note that the total
perceived unfairness remains almost the same while the non-compliance rate increases from 10%
to 50%. This result implies that travelers who remain guided are taking longer detours and paying
more to compensate for the efficiency loss due to the non-compliant travelers.
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Figure 4: Average number of visited ICs (AVIC) against
non-compliance rate.

4 Conclusions

This paper investigates the impact of non-compliance behavior on the effectiveness of the Multi-Hop
Control Scheme (MHCS) recently proposed for traffic management. Our numerical findings suggest
that as travelers become less compliant, system efficiency inevitably drops, though the decreasing
speed and magnitude highly depend on the set of intermediate checkpoints (ICs). In general,
having more ICs in the network brings MHCS a larger capacity to absorb non-compliant behaviors
without compromising system efficiency. Yet, as the non-compliance rate increases beyond a certain
threshold, the effectiveness of MHCS cascades rapidly.

Regarding the trade-off between efficiency and fairness, it is also revealed that the gain in network
efficiency may not justify the cost of enforcing full compliance of travelers. Instead, it is possible to
achieve a nearly optimal state while assuming few travelers comply with the route recommendation,
or equivalently, few travelers are controlled. Nevertheless, the compromise made by these guided
travelers should not be overlooked. The result that the system efficiency remains the same while
fewer users are guided implies these users may suffer from much longer detours. In this regard,
the central planner needs to make a trade-off between implementing comprehensive control over
all travelers and targeting a certain group of travelers, who should be compensated more for their
contribution to the social good. A plausible strategy is to alternate the role of travelers between
guided and unguided on a daily basis (e.g., daily commuting). In this way, every user can benefit
from the routing scheme instead of sacrificing for society all the time. Another idea is to assign
route guidance to AVs in mixed traffic (Zhang & Nie, 2018), anticipating the wide adaptation of
AVs and the less sensitivity of AV travelers towards detours.
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