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SHORT SUMMARY

A quantitative method to studying charging station demand under a minimum of sce-
nario/modeling assumptions is presented. The approach enables a quantitative analysis in
situations where scenario uncertainty renders a traditional simulation study infeasible. Case
study results for a sketch version of the Skellefteå region in Sweden illustrate the approach.
Keywords: Transport network modeling, Electrification, Operations research applications

1 INTRODUCTION

The broad adoption of electric vehicles requires the design and placement of corresponding
charging stations, drawing much attention to quantitative charging demand studies. Examples
from the previous hEART conference comprise the data-driven charging demand analysis of
Hajhashemi et al. (2023) and the Swedish simulation study of Arabani et al. (2023). Stochastic
simulation is the mainstream analysis tool when addressing uncertain futures and nontrivial
model structures (Williams et al., 2024; Harris et al., 2023). Mainstream driving/charging sim-
ulations require parameterizing a possibly large number of internal sub-models (travel behavior,
charging behavior, ...), which may be challenging if the parameters of the scenario under con-
sideration are uncertain. This calls for a Monte-Carlo analysis, the extent of which is bound by
computational facilities (Punzo, 2015).
The present work adopts a probabilistic model to charging demand analysis. It differs from
mainstream simulation approaches in that the model can be evaluated even with an absolute
minimum of information (a set of possible charging stations, the charging logic at each sta-
tion, the energy consumption and travel time when moving from one station to another). In
the minimum-information case, the model predicts a uniform distribution over all physically
feasible driving/charging patterns. Adding travel behavioral assumptions, which is possible in
an incremental manner, focuses the predicted driving/charging behavior on patterns that are
compatible with these assumptions.
The model relies on a discrete state space of driving/charging patterns over which a target
probability distribution of modeling assumptions is defined. The Metropolis-Hastings algorithm
(Hastings, 1970) is used to draw driving/charging patterns according to this distribution. Since
the resulting number of possible driving/charging patterns may be huge and difficult to sample
from representatively, importance sampling (e.g., Ross, 2012, Chapter 9.6) is used to over-sample
driving/charging patterns that are of interest to a given analysis question; this over-sampling is
then corrected for in the statistical analysis such that unbiased predictions are obtained.
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2 METHOD

The presented method considers private car charging in that it assumes that travel occurs in
daily round trips that are anchored at a home location. Adaptations for demand segments with
different travel structures (e.g. freight) are possible within the same framework.
Consider a set of parking locations 1, . . . , L and discretize within-day time into uniform intervals
(time bins) 1, . . . ,K. A round trip is an alternating sequence of parking and driving episodes
that starts and ends at the round trip’s home location. The finite length Jx ∈ {1, . . . , Jmax}
of round trip x represents the number of parking resp. driving episodes in that round trip. A
round trip x is a three-tuple x = (lx, dx, cx), as subsequently defined.

• lx = (lx,1, . . . , lx,Jx) is the sequence of visited parking locations; lx,i ∈ {1, . . . , L} for
i = 1, . . . Jx. The first location lx,1 is called the home location. Adjacent locations must
be different, meaning that lx,i ̸= lx,i+1 for all i = 1, . . . , Jx − 1 and, since the round trip is
completed by returning from the last location back home, lx,1 ̸= lx,Jx . The requirement of
alternating locations may be relaxed; it is adopted here to remove energy-wise uninteresting
short trips within a given location from consideration.

• dx = (dx,1, . . . , dx,Jx) is the sequence of planned departure time bins, with dx,i ∈ {1, . . . ,K}
being the planned departure time bin from parking location lx,i. Departure time bins are
strictly increasing in that dx,i < dx,i+1 for all i = 1, . . . , Jx − 1. The departure time bins
represent a desired time structure that may or may not be compatible with a given physical
reality of finite travel speeds.

• cx = {cx,1, . . . , cx,Jx) is the sequence of planned charging actions, meaning that cx,i ∈ {0, 1}
indicates if charging is planned at location dx,i or not. If charging actually occurs at a
given location depends on the availability of a charger.

This defines a finite, yet possibly very large state space of possible round trips. Given L locations
and K time bins, a round trip of size J has sizechg(J) = 2J possible charging configurations,
sizedpt(J) =

(
K
J

)
possible departure time bin combinations, and

sizeloc(J) =


L if J = 1

L · (L− 1) if J = 2

L · (L− 1) · (L− 2) if J = 3

L · (L− 1)J−2 · (L− 2) · σ(J, L) if J > 3

(1)

possible location sequences, with σ(J, L) an available but somewhat unwieldy expression taking
values between one and (L − 1)/(L − 2). The size of the state space (total number of possible
round trips) is hence

∑Jmax

J=1 sizeloc(J) · sizedpt(J) · sizechg(J).

In the complete absence of travel behavioral information, all possible round trips may be con-
sidered equally realistic. However, given that the number of possible round trip configurations
grows rapidly over the round trip length J , this alone would imply the assumption that longer
round trips are (much) more likely to arise than shorter ones. A convention is hence adopted that
a most uninformed round trip distribution is (i) uniform over all round trip lengths 1, . . . , Jmax,
and (ii) given the round trip length J uniform over all round trip configurations of that length.
This is ultimately a modeling decision, and different specifications may be adopted. It is achieved
by assigning the following “uninformed” probability to round trip x of length Jx:

puninf(x) = (sizeloc(Jx) · sizedpt(Jx) · sizechg(Jx))
−1 . (2)

Let the round trip probability distribution pmodel(x) represent all modeling assumptions made
about driving/charging behavior. (An example may be a higher probability for overall shorter
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travel times in combination with longer parking episodes at relevant activity locations.) Since
these modeling assumptions are by definition deviations from the uninformed round trip distri-
bution (2), specifying round trips according to given model pmodel amounts, apart from normal-
ization, to postulating a target distribution puninf · pmodel over all round trips.
Let h(x) map round trip x onto an performance measure of interest. (This could, for instance, be
the amount charged at a given parking location.) We are interested in the expected performance
measure h over a given round trip target distribution, i.e. E{h(X)} with random variable
(round trip) X distributed according to the target distribution. Given a machinery to draw R
independent realizations x(1), . . . , x(R) of X, we can approximate the expectation of interest by
an average over the performance measures of these realizations: 1

R

∑R
r=1 h(x

(r))
R→∞−→ E{h(X)}.

The variance of this estimator falls with R, but a relatively high variance may still arise if
round trips relevant to h are unlikely to arise in the target distribution. This is addressed using
importance sampling: Let the nonzero importance weight q(x) be the larger the more relevant
round trip x is for performance measure h. Sampling x(1), . . . , x(R) from a (normalized version
of) puninf · pmodel · q yields the asymptotically unbiased variance-reduced estimator∑R

r=1 h(x
(r))/q(x(r))∑R

r=1 1/q(x
(r))

R→∞−→ E{h(X)}. (3)

The Metropolis-Hastings (MH) algorithm is used to draw round trips according to puninf · pmodel
or, with importance sampling, according to puninf · pmodel · q. This implies that it is sufficient
to specify the involved distributions up to a normalizing constant, which avoids enumerating
all possible round trips for computing this constant. Deploying the MH algorithm in the given
setting requires defining an irreducible proposal distribution on the state space of all possible
round trips. The important but rather technical specification of this distribution is omitted
due to space restrictions; it basically consists of randomly inserting/removing driving/parking
episodes into a given round trip, or randomly changing aspects location, departure time, charg-
ing) of that episode. See Ross (2012, Chapter 12) for an introduction to the MH algorithm and
Flötteröd and Bierlaire (2013) for a related approach in the context of route choice set sampling.

3 RESULTS AND DISCUSSION

This section presents one out of many possible adaptations of the proposed method to driv-
ing/charging analysis.
Figure 1(left) shows a map of the Swedish municipality Skellefteå. The red circles indicate
seven possible parking locations, with circle sizes loosely corresponding to parking location sizes.
Network distances between locations range from 5 km to 50 km. Further scenario parameters
are displayed in Table 1. Even in this relatively small scenario, there are more than 200 million
possible round trips. To illustrate that the proposed approach enables meaningful analyses
without requiring a complete state space enumeration, a sample size of one million (less than
5h of the state space) is used in all experiments. For brevity, all analysis is limited to first-order
statistics, and all reported results approximate expected values over the possible round trips of
a single vehicle, meaning that one needs to scale up these numbers by the considered driver
population size in order to obtain grand totals. The (single-threaded) computing time is on a
1.8 GHz i7 CPU in the order of minutes.
A simple, deterministic simulator is adopted that translates a round trip into a within-day
sequence of realized driving/charging episodes. Omitting details due to space restrictions, the
simulator moves a vehicle once through its round trip, keeping track of time-of-day dependent
battery levels and realized location arrival/departure times. The simulator ensures that battery
capacity is not exceeded but even moves vehicles with negative battery levels. Further constraints
are therefore added as modeling assumptions. The corresponding target weights are composed
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Figure 1: Study region (left, adopted from Google maps), driving episodes (right).

Table 1: Scenario parameters

Parameter Value
location distance from underlying road network
driving speed 60 km/h
travel time between locations location distance / driving speed
energy consumption 0.2 kWh/km
charging rate 11 kW
battery capacity 60 kWh
number of locations L 7
number of time bins K 24
max. round trip length Jmax 4

of products of the following terms:

pnonneg(a) = emin{a,0} (4)
pclose(a, b) = e−|a−b| (5)

where (4) approaches zero as a gets increasingly negative and (5) approaches zero as the distance
between a and b increases. Based on this, the following constraints are formulated, using self-
explaining variables: (i) Desired and realized departure times coincide; modeled by a product
of terms pclose(desiredDeparture, realizedDeparture). (ii) A round trip is completed within 24 h;
modeled by pnonneg(24 h − realizedDuration). (iii) Battery load profile is 24 h-periodic; mod-
eled by pclose(batteryBeforeMidnight, batteryAfterMidnight). (iv) Battery level is non-negative;
modeled by pnonneg(batteryLevel). The product of these terms constitute the first investigated
model pconstr, meaning that round trips are sampled according to puninf ·pconstr with puninf defined
in (2).
Figure 1(right) displays, over hours of the day, the probability that a round trip implies that the
vehicle is driving (not parked). The “only constraints” curve is flat, which reflects the fact that
no time-of-day specific modeling assumption has been made. Figure 2 offers further summary
statistics, all over hour-of-day. Parking occurs almost uniformly over all available locations.
The expected amount charged grows with the travel distance that is needed reach a charging
location; it is largest for the countryside villages Burträsk and Boliden. Expected charging
values are smaller than the charging rate because they include the possibility of not charging.
The time structure of these curves merely represents the fact that the home location has the by
definition earliest departure time and hence is most likely to be visited early and late during the
day.
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Figure 2: Uniformed model

The uninformed time structure is far from realistic. A behavioral assumption is hence added
that captures an employed driver who spends at least 8 consecutive hours between 20:00 and
6:00 at home and at least 8 consecutive hours between 6:00 and 20:00 at an out-of-home work
location. The following construction (one out of may possible) achieves this:

i∗x = argmax
i=1...Jx

{
duration

(
parkingIntervalx,i ∩ targetInterval

)}
(6)

p(x) = min

1.0,

duration
(

parkingIntervalx,i∗x ∩ targetInterval
)

minimumDuration

10
 · ϕ(lx,i∗x). (7)

Equation 6 identifies the parking episode within round tip x that has the largest time overlap with
a given target interval (20:00-6:00 for being at home, 6:00-20:00 for being at work). Equation 7
consists of two factors. The first factor evaluates the ratio of the realized parking duration over
the required minimum duration (limited to one and raised to the 10th power to strongly down-
weight too short parking episodes). The second factor is a location-specific weight, which in the
given case study is loosely derived from the number of available home and work opportunities,
as shown in Table 2. This is an over-simplified travel behavioral model. It merely captures,
with relative ease, a basic scenario-specific assumption, which as well could arise as a qualitative
statement in a stakeholder/expert discussion. Round trips are now sampled according to puninf ·
pconstr · phome · pwork, with the latter two terms representing the newly added travel behavioral
assumptions. Figure 1(right) shows that the resulting “employed driver” travel pattern exhibits
distinct morning and evening peak hours. Figure 3 indicates that home and en-route parking
occur consistently with the chosen location preferences and that the traveler is likely to park (and
possibly charge) at home over night and at work during the day. En-route charging for relatively
unattractive locations peaks in the late morning and early evening because of intermediate stops
before and after the work episode.
Now we are interested in round trips that charge, throughout the day, at least 10 kWh on campus.
For this, we specify the importance distribution q ∼ pnonneg(amountChargedOnCampusx −
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Table 2: Location weights

Location Home weight ϕhome Work weight ϕwork

Boliden 1.00 1.00
Kåge 1.00 1.00
Center 5.00 5.00
Campus 0.01 2.00
Hamn 0.01 2.00
Bureå 1.00 1.00
Burträsk 1.00 1.00

Figure 3: Employed drivers

10 kWh). Round trips are hence sampled from the un-normalized distribution puninf · pconstr ·
phome · pwork · q, and the resulting statistics are corrected for the importance sampling using (3).
All subsequently presented results are obtained by only considering round trip realizations that
charge at least 10 kWh on campus, meaning that they truthfully reflect the driving/charging
behavior of an employed driver given that this driver charges at least 10 kWh on campus.
Figure 1(right) reveals that the probability of driving episodes for “campus charging” is larger
than without this criterion, which can be explained by longer travel inducing a larger demand for
(campus) charging. Figure 4 indicates, unsurprisingly, that round trips of interest now almost
exclusively charge on campus, which also is the by far preferred out-of-home parking location.
The largest share of round-trips now has Centrum as its home location, where many possible
travel patterns originate that contain one or two energy-demanding short trips to countryside
destinations before/after engaging in a long on-campus charging episode of interest.
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Figure 4: Employed on-campus chargers only

4 SUMMARY

The presented case study illustrates that the proposed method allows to quantitatively study
charging station demand even in extremely uncertain scenarios. The proposed approach consists
of incrementally adding modeling assumptions that constrain the possibly huge space of feasible
driving/charging patterns rather than imposing very specific modeling assumptions. The pos-
sibility to incrementally add modeling assumptions renders the method suitable for interactive
planning support.
A completely different application of the proposed method should also be mentioned. Multi-
agent transport simulations such as MATSim (Horni et al., 2016) may require the construction
of home-based round trips from often available yet relatively uninformative origin/destination
matrices (Matet et al., 2023). Setting the sampling weights of the proposed method propor-
tional to the the frequency with which the travel episodes of a round trip arise in a given
origin/destination matrix immediately addresses this problem. Further modeling assumptions
can be included in the same manner as illustrated above.
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