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SHORT SUMMARY

Wi-Fi data, collected from sensors placed on buses, seem promising for generating O-D matrices
over a network. However, obtaining accurate bus ridership data is a challenge for public transport
operators. Issues of completeness remain, as Wi-Fi sensors do not detect all signals emitted by
connected objects in their vicinity, and some people do not own these devices. Data scaling is
therefore a crucial step in the process of building O-D matrices from Wi-Fi data. In this work, four
machine learning algorithms are compared to estimate the absolute values of passengers boarding
and alighting at a bus stop based on Wi-Fi data and spatial and temporal characteristics. The
results show that LGBM is the most relevant algorithm for generating accurate data.
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1 INTRODUCTION

Understanding passenger behavior is a necessary prerequisite for planning and managing public
transport (PT) systems (Wu et al., [2020)). PT aims to provide users with safe, intelligent, reliable
and efficient transportation services (Li et al.l 2023; Haydari & Yilmaz, [2020). Mobility behavior
has become less regular in recent years, due to profound socio-economic changes and more frequent
disruptive events, such as the pandemic, (Skare et al.,[2021), but also the emergence of new services
and the uberization of processes. At the same time, transport studies have tended to incorporate
new technologies and massive data.

Data can be collected from various sources like smart cards, telephony, Wi-Fi or Bluetooth sensors
(Kaffash et al [2021; Karami & Kashef, 2020)), mostly passively, thanks to the development of new
connected objects such as smartphones, smartwatches, connected headphones and so on. Wi-Fi
data first appeared in mobility studies in the years 2010s, and the literature shows that they are
a promising way to capture mobility behaviors (Dunlap et al., 2016; [Blogg et all |2010). They are
collected using electromagnetic wave sensors, that detect connected objects in their environment,
as they search for an access point to connect to (Pu et al., |2021)). The connected objects are not
personally identified, and the MAC addresses are often pseudonymized for confidentiality reasons
(CNIL; [2021). In PT, sensors placed in vehicles and coupled with a GPS module can provide
information about the origin and destination of passengers’ trips. Being able to link the origin
and the destination of a passenger trip, Wi-Fi sensors can be used to build dynamic O-D matrices.
From this point of view, they have the potential to outperform traditional automatic passenger
counting systems in understanding mobility patterns (Nitti et al.,|2020). Wi-Fi sensors are used in
several mobility studies, especially in PT, either to represent bus loads, or the number of passengers
boarding or alighting at a stop (Paradeda et all, [2019; Hidayat et al., |2020) or to estimate O-D
matrices (Pu et al., 2021} Nitti et al.l 2020). Most of these studies have focused on the process of
sorting Wi-Fi signals, to separate those belonging to real bus passengers from parasitic signals and
to improve the representation of mobility behaviors (Jalali, |2019; [Fabre et al.| |2023]).

However, the use of Wi-Fi data raises several challenges in terms of completeness: some passengers
do not have a connected object or have many, some devices are not detected by bus sensors, and it
is rare for all the buses in a network to be equipped with Wi-Fi sensors. [Nitti et al.| (2020) highlight
that the percentage of ownership of a connected object varies according to social position and age,
two key determinants of mobility behaviors. This finding suggests that there are differences in the



ownership of connected objects, depending on the time of day and the bus stop considered. This
bias may lead to an under or overestimation of the number of people present in the vehicles if no
weighting correction is applied, as shown in |[Kurkcu & Ozbay| (2017). In addition, Franssens|(2010)
noted that some interference phenomena can affect signal detection, which is more likely to occur
during peak hours and in city centers.

To reflect the mobility behavior of PT users, it seems important to take spatial and temporal vari-
ables into account when scaling Wi-Fi data. This paper aims to meet this objective by identifying
and comparing different machine learning algorithms to weight Wi-Fi data. Machine learning and
artificial intelligence algorithms make it possible to introduce a wide range of model inputs, includ-
ing variables related to the spatio-temporal context. For example, Pu et al| (2021)) use Random
Forest regression to estimate PT ridership based on time variables. The methodology provides
estimates that are fairly close to the observed data, but has only been applied to a small sample.
The work of |(Chang et al.| (2023) focuses on estimating online ridership and develops a model that
combines various machine learning algorithms. The results show that the model underperforms in
certain areas where people are expected to carry fewer connected objects.

This work compares and ranks different methods to weight PT ridership estimated from Wi-Fi data.
Wi-Fi data correction is an essential step in the construction of reliable and representative O-D
matrices. As O-D surveys are not conducted regularly enough, we use optical counts as reference
data to scale boarding and alighting passenger numbers. Subsequently, the O-D matrix structure
derived thanks to previously introduced methodologies [Fabre et al. (2023) can be applied to the
weighted set of trips starting or ending at each stop. The paper proposes a reliable method for
estimating the actual number of boarding and alighting counts from Wi-Fi data. Its originality lies
in the use of machine learning to have a weighting process that depends not only on the collected
signals, but also on their spatio-temporal characteristics.

2 METHODOLOGY

The Wi-Fi data used in this work is first filtered to distinguish the signals emitted by real bus
passengers from interfering signals, which are removed from the database. This step follows the
methodology described in [Fabre et al.| (2023).

The general architecture of the method is shown in Figure[I] Optical counts are used as the "real"
value. They provide the number of people getting on and off at each stop. The goal is to match
the number of Wi-Fi detected passengers at a stop with the number of people at that stop as
determined by optical counts. Two models are implemented, one for boarding passengers and one
for alighting passengers.

INPUT OUTPUT

Temporal features

Weighted Wi-Fi
passengers

Spatial features —

Wi-Fi passengers

"Real" passengers
(Only for the training)

Figure 1: Input and output variables for weighting Wi-Fi data

We consider the number of people getting on and off at each stop detected by the Wi-Fi sensors
to be the new MAC addresses and the last MAC addresses detected at each stop, respectively.
The new MAC addresses at each stop correspond to the number of MAC addresses detected at



the stop that were not previously detected, and the last MAC addresses at each stop correspond
to the number of MAC addresses detected at the stop that were not subsequently detected (i.e.,
the last time this object is seen at a stop). For this, we developed a method to assign signals to
the nearest stop and to determine whether each of these signals belongs to a previously (or lastly)
detected object or not. These variables are assumed to be a proxy for the real number of boarding
and alighting passengers at each stop.

Exploratory analysis of the Wi-Fi data shows that the ratio between observed and detected MAC
addresses varies between stops and according to hour, week and month of the year (Figure . We,
therefore, include different spatio-temporal variables to account for this variability in the weighting
process. Temporal variables are derived from the date and time of the observations and include
day of the week, month of the year, peak hour information, etc. Spatial variables are derived
from additional data sources and are merged thanks to the coordinates of each bus stop. They
include the number of connections available at each stop and the population living around the stop
(national de la statistique et des études économiques, |2016)). In order to select the input variables
for the models, some feature engineering was done for the prediction of boarding passengers and
for the prediction of alighting passengers. A correlation analysis was then performed to avoid
including correlated features in the models. The final selected variables are gathered in Table []

Table 1: Selected features

Variable Type | Definition

Nbnew mae Int Number of new MACs detected

NO1ast mac Int Number of last MACs detected

day Int Day of the year from 1 to 365

weekday Int | Day of the week from 1 to 7

Cind Float | Number of persons living within a 200m square of the stop
COTTESsemirapid Int Number of possible connections with a BRT

COTTeSstrect Int Number of possible connections with a bus

Several algorithms are then used to predict the number of people getting on and off a bus. The
goal is to compare the models and select the one that best replicates observations from optical
counts. Linear Regression (LR) is used as a basis for the comparison. Three other models are run:
Random Forest (RF), Light Gradient Boosting Machine (LGBM) and Multi-Layer Perceptron
(MLP) (Hastie et al. [2009). All of them are compatible with high-dimensional data, allow for
feature evaluation, and usually give very good predictions while maintaining fast execution. Grid
search is used to find the optimal hyperparameters for RF and LGBM, trial and error was used
to set the MLP hyperparameters, and no hyperparameters are needed for the LR. For the sake of
brevity, these hyperparameters are not detailed in this abstract.

3 RESULTS AND DISCUSSION
Case study

This study used Laflowboz, a Wi-Fi data collection sensor developed by Explain, a French transport
planning consultancy firm. The data were collected in Rouen, France, the largest city in the Rouen
Normandie conurbation (70 municipalities, 494,000 inhabitants). Wi-Fi sensors were installed in
buses belonging to the Transport Est Ouest Rouennais (TEOR) network, the main network in
Rouen, which consists of four lines. In 2022, six different buses traveling on this network were each
equipped with a sensor that collected data continuously throughout the year.

By calculating the daily number of passengers boarding and alighting, it is possible to observe
differences in the relationship between Wi-Fi data and optical count data, both from one period of
the year to another and from one stop to another. Figure [2] shows the daily boarding passengers
throughout the year 2022 with optical counts and Wi-Fi data for two lines of the network. It
appears that Wi-Fi data and optical counts are not linearly related over the year, nor from one
line to another. This supports the need to find a method for weighting Wi-Fi data that takes into
account spatial and temporal variability.
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Figure 2: Boarding passengers on T2 and T3 lines with Wi-Fi and optical counting

Results

As discussed in the methodology, four models are considered for predicting boarding and alighting
passengers at a stop from Wi-Fi data (LR, RF, LGBM and MLP). Three performance indices are
computed to evaluate the quality of the proposed models. The coefficient of determination (R?),
the Root Mean Square Error (RM SE) and the Mean Absolute Error (M AE). The performance is
evaluated on a daily basis, i.e. replication of daily boarding and alighting passengers number. To
do this, we have added all the boarding (resp. alighting) passengers observed for the trips made
on the same day.

The results for the four selected models are summarized in Table[2] The LGBM algorithm is found
to outperform the three other algorithms in both cases (boarding and alighting), followed by the
RF, NN and lastly LR. With LGBM RM SFE = 16.51 for the prediction of boarding passengers and
RMSE = 17.29 for the prediction of alighting passengers. Also, the maximums predicted with
LGBM are close to those obtained with ground truth.

Table 2: Metrics for the different models implemented to predict boarding and alighting
passengers (day scale)

Model R2 RMSFE MAFE min max
LR 0.61 37.98 20.96 1.0 520.0
Boarding RF 0.89 20.39 12.50 0.0 800.0
passengers LGBM 0.93 16.51 10.04 0.0 832.0
NN 0.79 27.65 16.55 0.0 902.0
LR 0.54 43.66 23.03 1.0 507.0
Alighting RF 0.91 19.11 11.70 0.0 875.0
passengers LGBM 0.93 17.29 10.50 0.0 873.0
NN 0.76 31.66 17.72 0.0 960.0

Based on the previous results, the Light Gradient Boosting Machine algorithm was selected to
predict passengers boarding and alighting at each stop using Wi-Fi data. The following figures
provide more insight into the predictions obtained with LGBM. The analysis is presented here for
the prediction of boarding passengers only. Figure [3| (a) shows the predicted number of boarding
passengers versus the actual number of boarding passengers for each observation in the database.
The red line is the linear regression of the predicted passengers as a function of the observed
passengers, and the black dashed line is the curve of the equation y = x. Figure [3| (b) shows the
distribution of absolute errors between the predicted and observed number of boarding passengers.
96% of the observations are predicted with an absolute error between —30 and 30 passengers per
day, which is very low. These two figures highlight the very good matching between observed and
predicted boarding passengers.

The SHAP values (Hastie et al|2009) show that the model relies mostly on the number of available
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Figure 3: (a) Linear regression of predicted with LGBM versus observed boarding passen-
gers: (b) Distribution of absolute errors made on the daily predictions of boarding passen-
gers with LGBM.

connections (corressereet ), the number of residents around the stop, and then equally on the number
of new MAC addresses detected and the day of the year (features with the greatest influence). The
impact of each of these features on the predictions is shown in Figure [ (a), (b), (c) and (d). The
number of predicted boarding passengers increases as the number of new MAC addresses detected
increases until it reaches the value of four new MAC addresses detected at a stop for a single bus
journey. It also increases significantly when the stop offers more than 4 connections. Concerning
the temporal variables, the number of predicted boarding passengers is higher in March and in
the fall. The decrease in August is also significant. The number of inhabitants also has an impact
on the results, although the trend is less pronounced. There is a slight decrease in the number of
predicted boarding passengers for the stops with 200 to 300 or very few inhabitants nearby.

4 CONCLUSIONS

This research deals with the use of Wi-Fi sensors in PT. While most studies on this topic focus
on the filtering of noisy signals, there is another important step to take in order to derive accurate
O-D matrices from Wi-Fi data, both in relative and absolute terms. This is the weighting of
the data, required to obtain the correct passenger volumes. To address this issue, this paper
aims to develop a methodology to weight Wi-Fi data in a way that takes into account the spatial
and temporal variability in the scaling process. Four machine learning algorithms are compared :
the Linear Regression, the Random Forest, the Light Gradient Boosting Machine and the Multi-
Layer Perceptron. The models take as input the Wi-Fi detections at each bus stop, as well as
spatial and temporal variables. The models are trained using optical counts as ground truth data.
The experiment was conducted on a one-year long data collection in several buses of the TEOR
network (Rouen Normandie Metropole, France) equipped with Wi-Fi sensors. The present study
has achieved its objective, as several algorithms give encouraging results. The algorithm that
leads to the best predictions of boarding and alighting passengers is the LGBM with lower RM SE
and higher R? between predicted and observed values. Thanks to this method, it is possible to
weight the number of passengers boarding and alighting at a bus stop, taking into account the
geographical location of the bus stop and the temporality. This can be done continuously with
Wi-Fi detections only, since the model is already trained and performs well on different datasets
(unless there is a very strong disruption in the network). Further work could include applying the
weighted volumes to the previously obtained Wi-Fi O-D matrix structure (Fabre et al., 2023) to
be able to continuously study trip volumes and structure, simply with Wi-Fi data.
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Figure 4: Partial dependence plot for predicting boarding passengers with LGBM (a) Feature
Nbnew mac; (b) Feature corressyreet; (¢) Feature day; (d) Feature cipg.
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