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Short summary

Most choice models assign non-zero probabilities to all alternatives. However, decision-makers
may not consider many alternatives due to their high cost. The Bounded Choice Model (BCM)
accounts for this by assigning zero probabilities to alternatives with costs exceeding some bound,
thus determining a subset of alternatives individuals consider using a consistent criterion with
the choice from this consideration set. The BCM is, however, non-differentiable, which prevents
calculating parameter estimates’ standard errors.

In this paper, we develop a doubly differentiable BCM, the C2 BCM. Likelihood derivatives and
Hessian matrices of the C2 BCM are derived analytically, enabling the calculation of the model
estimates’ covariance matrix and elasticities. The C2 BCM is estimated and benchmarked with
the Multinomial Logit and BCM in large-scale mode choice and route choice case studies. The C2

BCM provides a richer interpretation and analysis than the MNL and BCM while providing the
best fit in both datasets.

Keywords: Bounded Choice Model, Consideration set, Differentiability, Analytical Hessian, Mode
choice, Route choice

1 Introduction

Probabilistic choice models are used to understand and forecast people’s choice behaviour and are
an important tool in transport studies, e.g. when planning infrastructure improvements. Typically,
these models assume that individuals choose among a choice set C of alternatives. Modellers’
assumptions about individual choices are the following:

1. They choose from the whole choice set C, and apply a choice probability model P(i|C) to
determine the probability of choosing each alternative from this set, up to deterministic avail-
ability constraints. This approach may be prone to misspecification and lead to inconsistent
parameter estimates (see, e.g., Swait & Ben-Akiva (1987)).

2. They choose from a subset of the choice set (usually referred to as the consideration set) and
apply a choice probability model to this subset only. The choice probabilities of an alternative
i ∈ C are then computed over all the subsets of C, as

∑
X⊆C P(X)P(i|X), using Manski (1977)

framework (e.g., Swait & Ben-Akiva (1987)). While these models assume different criteria
rule consideration set formation and choice from the consideration set, Horowitz & Louviere
(1995) found that the same preferences drove these two stages. Moreover, Manski’s approach
is computationally expensive and tractable for only small choice sets.

3. They choose from a subset of the representative universal choice set, but the consideration
subset of alternatives is determined implicitly through the computation of the choice proba-
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bilities from the probability model. This approach allows consistency between consideration
set formation and choice from the consideration set.

While promising in many applications, this last category is yet to be investigated in a general
choice modelling context. The Bounded Choice Model (BCM, Watling et al. (2018)) belongs to
this category. It implicitly generates subsets of the representative universal choice sets, allocating
zero probabilities to alternatives whose cost is not within some bound of a reference- alternative.
This bound is estimated on observed choices (Duncan et al. (2021)). The BCM has yet only been
applied to route choice (e.g., Watling et al. (2018), Duncan et al. (2023)) but is relevant in many
choice contexts.

However, the BCM choice probabilities are non-differentiable. It is thus impossible to calculate
standard errors and covariances of estimated parameters analytically. Moreover, proofs of the
asymptotic normality of the Maximum Likelihood (ML) estimator assume the likelihood is differ-
entiable (Norets (2010)). Non-differentiability also prevents calculating elasticities or confidence
intervals for, e.g. Marginal Rates of Substitution (MRS) (Daly et al. (2012)).

To resolve the non-differentiability issue, we develop a doubly differentiable version of the BCM,
the C2 BCM. Importantly, the C2 BCM maintains the core features of the BCM. This includes
maintaining the same bounding, continuity, and collapsing to MNL properties. Upon formulation
of the model, we derive the choice probability and likelihood gradients and Hessian matrices with
respect to the model parameters and attributes. Consequently, we derive standard errors and elas-
ticities of ML estimates. To explore these new metrics, we estimate the C2 BCM, and benchmark
it with MNL and the original BCM, in three large-scale case studies:

• A mode choice case study on more than 20,000 observed trips in the Greater Copenhagen
area. This case study allows the calculation of the demand elasticities and the analysis of
the generated consideration sets.

• A bicycle route choice case study in the Greater Copenhagen area. We propose a methodol-
ogy to account consistently for route overlap. We calculate the MRS for distance and their
confidence intervals.

• A Public Transport route choice case study in Copenhagen area. We calculate the MRS for
bus In-Vehicle Travel time (IVT) and their confidence intervals.

In all case studies, we find that the C2 BCM fits the data better than the BCM and MNL, and
provides an enriched model interpretation.

2 Methods

The Bounded Choice Model

We assume that a decision-maker faces a choice situation with positive disutilities, which we will
refer to as cost or generalised cost. We define the choice set of alternatives as C. Each alternative
i is described by K attributes that can be stored in a vector xi = (xi1 · · ·xiK). For i ∈ C, we call
yi the choice dummy (yi = 1 is the event "the decision-maker chooses i ∈ C"). The BCM from
Watling et al. (2018) has the following choice probabilities:

P(yi = 1) = PBCM
i (X;θ, φ) =

(
exp(−(θ⊤xi − φmin

l∈C
θ⊤xl))− 1

)
+∑

j∈C

(
exp(−(θ⊤xj − φmin

l∈C
θ⊤xl))− 1

)
+

(1)

X ∈ R|C|×K is the matrix of the xi’s for all i ∈ C, θ is a vector of size K of the cost function
parameters so that c = θ⊤X ∈ R|C|

+ is the vector of positive costs of the alternatives of the choice
set. φ ∈ ]1,+∞[ is the relative surplus cost bound parameter. The function (.)+ = max(0, .)
ensures that, if θ⊤xi ≤ φmin

l∈C
θ⊤xl, i.e., if an alternative cost is higher than the relative surplus

travel cost bound, the choice probabilities of the alternative i, Pi = 0. θ and φ can be estimated
using a MLE procedure (see Duncan et al. (2021)) for a given dataset of observed choices.
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This model is continuous with respect to all the variables. However, the (.)+ function is non-
differentiable with respect to any parameter when one alternative reaches the bound. Similarly,
the definition of the reference alternative θ → min

j∈C
θ⊤xj is not differentiable with respect to θ.

Indeed, when the index of the minimum-cost alternative j(θ) changes, the partial derivative w.r.t
θ is non-continuous.

The C2 Bounded Choice Model

We derive a new version of the BCM probability relation that respects the following proper-
ties:

• The choice probabilities are doubly differentiable with respect to the cost vector θ, the bound
φ, and the attributes X on the whole domain they are defined.

• The choice probabilities tend to the MNL choice probabilities when φ tends to +∞.

• The choice probability of an alternative is equal to 0 if and only if the generalized cost of
this alternative is greater than φ times as much as the minimum cost among the choice set.

We are looking for a function gi(X;θ, φ) such that P C2BCM
i respects the above-mentioned properties

with
P C2BCM
i =

gi(X;θ, φ)∑
j∈C

gj(X;θ, φ)

We solve the two differentiability issues highlighted in the BCM definition, namely:

The non-differentiability of the (.)+ function: While the function t → (exp(t)− 1)+ is
not differentiable at 0, the function h(t) =

(
exp(t)− t2

2 − t− 1
)
+

is doubly differentiable at the
point t = 0. Indeed, we can see that:

h′(t) = (exp(t)− t− 1)+

Which is a continuous function with g′(0) = 0.

h′′(t) = (exp(t)− 1)+

Which is a continuous function with g′′(0) = 0.

The non-differentiability of the min function: To solve the non-differentiability of the
min function, it is possible to use a smooth approximation to the maximum function. One example
is the Mellowmax operator (Asadi & Littman (2017)), defined as:

Mα(θ
⊤X) =

1

α
ln

 1

|C|
∑
j∈C

eαθ
⊤xj

 (2)

α is a fixed hyperparameter. The MellowMax function approximates the min function when α →
−∞. As it is infinitely differentiable for any finite value of α, we use it to replace the min function
in the reference alternative definition. This leads to the following definition of gi:

gi(X;θ, φ) =

(
exp(−(θ⊤xi − φMα(θ

⊤X)))− (θ⊤xi − φMα(θ
⊤X))2

2
+ (θ⊤xi − φMα(θ

⊤X))− 1

)
+

(3)
and hence the C2 BCM choice probabilities, defined as gi∑

j∈C
gj

.

3 Case studies

Case study 1: Mode choice

The first case study is a mode choice model in the Greater Copenhagen Area. The dataset has been
extracted from the Danish National Travel Survey and contains 21,270 mode choice observations
collected between 2009 and 2019.
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Model specification

The estimated models have the following utility specification:

Vcar = θGTT,car × GTTcar

VPT = ASCPT + θGTT,PT × GTTPT + θacc × Acc + θegr × Egr
Vcycle = ASCcycle + θGTT,cycle × GTTcycle

Vcar = ASCwalk + θGTT,walk × GTTwalk

ASC are the Alternative Specific Constants, Acc and Egr are the Access and Egress times to the
public transport stops, calculated using Anderson (2013). The Generalised Travel Time (GTT)
variables are calculated as follows:

GTTcar = TTcar,free + θcongested × TTcar,congested + TCcar/V OT

GTTPT = TTinv + θtransfers × Ntransfers + θwait × WaitT + θwalk × WalkT + TCPT /V OT

GTTcycle = TTcycle,free + θcongested × TTcycle,congested

GTTwalk = TTwalk

Table 1 describes the variables and fixed coefficients. θtransfers is extracted from Nielsen et al.
(2021), while the θcongested, θwait, θwalk values are from Hallberg et al. (2021). The car travel
cost per kilometre and the Value of Time (VOT) are extracted from the Danish transport min-
istry1.

Variables Description Constants Value

TTcar,free Car travel time under free flow conditions θcongested 1.5
TTcar,congested Car travel time under congested conditions VOT 92 DKK/hour
TCcar Car travel cost (car distance times 1.477DKK/km) θtransfers 9
TTinv Public transport IVT θwait 1.5
Ntransfers Public transport number of transfers θwalk 1.5
WaitT Public transport transfer waiting time
WalkT Public transport transfer walking time
TCPT Public transport travel cost
TTcycle,free Cycling travel time under free flow conditions
TTcycle,congested Cycling travel time under congested conditions
TTwalk Walking travel time

Tab. 1: Variables and constants descriptions

Additionally, availability constraints have been added for car and bicycle trips, for which the
respondent must possess a car with a driving license, and a bicycle, respectively.

Results

The estimation results are given in Table 2. All the model estimates make intuitive sense regarding
sign and relative magnitude. The BCM fits the data clearly better than the MNL, and the C2 BCM
fits the data marginally better than the BCM.

The BCM and the C2 BCM bounds respectively cut out 28.7% and 21.8% of the available mode
choice alternatives. Table 3 summarizes the proportion of alternatives cut out by these relative
cost bounds. It shows that these cut-offs are mainly composed of walking trips, which are often
too long to be considered.

We can analyse the excluded alternatives from individuals’ consideration set by the C2 BCM bound
(see Table 4). The excluded walking and cycling alternatives are mostly overly long. In contrast,
the excluded Public Transport trips are rather short in areas that lack connections, where these
trips are largely outperformed by car and cycling.

1TERESA; https://www.cta.man.dtu.dk/modelbibliotek/teresa
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MNL BCM C2 BCM

Cost parameters (θ)

Alternative Specific Constants
Car - - -
Public Transport 1.279 (17.31) 0.8363 0.5685 (8.555)
Cycling 0.318 (5.681) 0.0162 -0.1255 (-2.517)
Walk 1.052 (3.671) -0.7499 -0.7336 (-4.472)

Generalised Travel Time
Car 0.0899 (33.19) 0.0619 0.0551 (31.26)
Public Transport 0.0197 (17.06) 0.0162 0.0166 (23.63)
Cycling 0.1009 (43.90) 0.0852 0.0815 (53.44)
Walk 0.0916 (14.04) 0.1034 0.0957 (22.39)

Public Transport variables
Access Time 0.0972 (15.04) 0.0781 0.0770 (14.57)
Egress Time 0.0828 (16.17) 0.0652 0.0650 (15.42)

Bound (φ) - 4.369 6.099 (39.62)

Final LL -11,097 -10,783 -10,781
Adj. ρ2 0.579 0.591 0.591
Number of parameters 9 10 10
Alternatives cut by bound 0% 28.7% 21.8%

Tab. 2: Model estimates, standard errors are between brackets. All parameters except the
starred one are significant at the 0.01 level for the MNL and the C2 BCM.

Car trips Public Transport trips Cycling trips Walking trips

BCM 0% 16.8% 8.67% 77.2%
C2 BCM 0% 6.27% 1.10% 69.4%

Tab. 3: Percentage of available alternatives cut out by each model bound

Excluded mode GTTcar GTTpub Acc Egr GTTcycle TTwalk

Public Transport 7.46 60.49 9.74 12.11 16.33 50.66
Bicycle 32.48 146.2 7.92 9.72 143.1 401.4
Walk 20.87 73.07 7.83 9.45 53.00 156.57

Tab. 4: Mean attributes for the included and excluded alternatives by the C2 BCM bound

Aggregate elasticities

We calculate the aggregate elasticities using the probability gradients. For instance, we can calcu-
late how much, on average, a decrease in Public Transport IVT will affect the choice probabilities
of all the transport modes. The elasticities output by the MNL are given in Table 5 and the C2

BCM elasticities are given in Table 6.

Mode GTTcar GTTpub Acc Egr GTTcycle GTTwalk

Car -0.323 0.140 0.065 0.063 0.176 0.011
Public Transport 0.628 -0.588 -0.311 -0.297 0.521 0.045
Cycle 0.269 0.206 0.132 0.122 -1.086 0.060
Walk 0.160 0.224 0.194 0.182 0.558 -3.490

Tab. 5: Aggregate point elasticities output by the MNL. The bold cells present direct
elasticities, and the other ones are cross-elasticities

We observe that relative changes in Generalised Travel Time (GTT) affect particularly the choice
probabilities of slow modes (cycling and walking).
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Mode GTTcar GTTpub Acc Egr GTTcycle GTTwalk

Car -0.392 0.137 0.061 0.059 0.231 0.0028
Public Transport 0.635 -0.584 -0.296 -0.279 0.515 0.072
Cycle 0.489 0.205 0.126 0.115 -1.326 0.113
Walk 0.185 0.254 0.201 0.186 1.703 -4.546

Tab. 6: Aggregate point elasticities output by the C2 BCM. The bold cells present direct
elasticities, and the other ones are cross-elasticities

Differences can be found between the two models. For instance, the elasticity of car probabilities
with respect to walking travel time is around four times smaller according to the C2 BCM than
the MNL. This is likely because most chosen car trips (11,700 times over 12,363 car choices) are
too long for walking to be considered. We also observe that a marginal increase in cycling travel
time has a greater impact on the walking predicted share according to the C2 BCM than the MNL,
suggesting a large substitution of cycling trips to walking trips.

Case study 2: Bicycle Route choice

The second case study models cyclists’ route choices in the Copenhagen Metropolitan area.

The Data

The case utilised a large-scale crowd-sourced dataset of bicycle GPS trajectories received from
Hövding (see Łukawska et al. (2023) for a description). The final dataset for model estimation
consists of a subset of this dataset containing 4,134 trips made by 4,134 cyclists. The cyclable
network can be modelled as a directed graph G = (V,E) where E is the set of links and V is the
set of nodes. The network size is large, with |E| = 420, 973 and |V | = 324, 492. The attributes of
link a ∈ E are as follows:

• La (km): Link length

• Ea (m): Link elevation gain when steepness > 3.5%

• Noa (km): Link length without bike infrastructure

• Sa (km): Link length on a non-asphalt surface (i.e. gravel, cobblestones)

• Wa (km): Link length on wrong ways (cycling against traffic).

These attributes are stored in the cost attribute vector ta = (La, Ea,Noa, Sa,Wa). For a route i
using a set of links Ai ⊆ E, these attributes are link-additive, so that the vector of cost attributes
of route i is defined as xi =

∑
a∈Ai

xa.

Correlation between alternatives: The C2 Bounded Path Size model

Due to the complex overlapping nature of road networks, the correlation between routes (i.e.
through link-sharing) should be accounted for (Florian & Fox (1976)). However, the BCM, and thus
the C2 BCM, do not account for route overlap. Path-Size correction models (Ben-Akiva & Bierlaire
(1999)) is a branch of models that account for overlap by penalizing the cost of overlapping routes.
Extending the BCM to account for such, Duncan et al. (2021) recently developed the Bounded
Path Size (BPS) model. The model’s key feature is that it can capture correlations between only
the routes with costs below the bound. Analogously modifying the BPS model to how we modified
the BCM to formulate the C2 BCM, we formulate a doubly-differentiable C2 BPS model.

P C2BPS
i (X;θ, φ, η) =


(
γC2BPS
i

)η

gj(X;θ, φ)∑
j∈C

(
γC2BPS
j

)η
gj(X;θ, φ)

if ci ≤ φmin c

0 otherwise

γC2BPS
i is the C2 Bounded Path-Size correction term, calculated as follows:
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γC2BPS
i (X;θ, φ) =


∑

a∈Ai

ta
ci

gj(X;θ, φ)∑
j∈C gj(X;θ, φ)δaj

if ci ≤ φmin c

0 otherwise
(4)

where gj is given by the C2 BCM choice probabilities numerator (Equation 3). Ai is the set of
links of route i ∈ C, ta = θ⊤ta is the cost of link a ∈ Ai, and δaj = 1 if route j uses link a and 0
otherwise.

Results

Table 7 displays the model parameter estimates for the following models: MNL, BCM, C2 BCM,
BPS, and C2 BPS.

Model MNL BCM C2 BCM BPS C2 BPS

Cost parameters (θ)

Length 28.54 (64.40) 25.46 20.97 (43.52) 14.71 11.99 (34.51)
Elevation gain 0.1069 (3.026) 0.0846 0.0849 (3.974) 0.0533 0.0533 (3.786)
No Bike infrastructure 5.162 (16.56) 4.302 3.553 (18.02) 2.343 1.819 (16.18)
Non-smooth surface 5.525 (55.37) 4.326 3.894 (37.76) 2.253 1.815 (30.76)
Wrong way 9.474 (47.89) 7.875 7.116 (37.9) 3.929 3.123 (29.43)

Path-Size coefficient (η) - - - 1.643 1.636 (42.49)

Bound (φ) - 1.110 1.128 (501.4) 1.105 1.140 (502.1)

Final LL -11,076 -10,778 -10,644 -9,910 -9.808
Adj. ρ2 0.513 0.526 0.532 0.541 0.569
N params 5 6 6 7 7
Routes cut by bound 0% 66.6% 59.2% 65.8% 41.5%

Tab. 7: Model estimates. The t-statistic (i.e. the coefficient divided by its standard error)
is given between brackets for each doubly-differentiable model. All the parameters are
significant at the 0.01 level.

The C2 BCM outperforms the traditional BCM and the MNL in fit. The C2 BCM relative cost
bound is estimated higher because of the smoothness of the probability function (there is no fast
increase of the choice probabilities around the bound). Accounting for the correlation between
routes with the BPS and C2 BPS leads to the largest increase in model fit compared to the
MNL.

The MRSs to length are given in Table 8. These MRS can be interpreted as the relative amount
of detour a cyclist (on average) will make to avoid one of the attributes included in the models (or
one meter of steep elevation). It is possible to calculate the standard errors for the MRS as (Daly
et al. (2012)):

σ

(
θ1
θ2

)
=

θ21
θ21

(
Ω11

θ21
+

Ω22

θ22
− 2

Ω12

θ1θ2

)
(5)

where (Ωij)1≤i,j≤2 is the asymptotic variance-covariance matrix of the MLE estimates (θ1, θ2). We
can then calculate the confidence interval (CIα) of confidence level 100(1− α)%:

CIα
(
θ1
θ2

)
=

θ1
θ2

± zα/2 × σ

(
θ1
θ2

)
(6)

where zα/2 = Φ−1(1− α/2), Φ being the cumulative distribution function of the standard normal
distribution.

The MRSs of the different models are similar, even if the BPS models seem to have slightly
lower MRSs to length than the other models. For instance, the MNL outputs that cyclists are
willing to ride 19.4% longer to avoid cycling on a non-smooth surface, while the C2 BPS outputs a
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Model MNL BCM C2 BCM BPS C2 BPS

Elevation gain 0.0037 (± 0.00357) 0.0033 0.0040 (± 0.00197) 0.0036 0.0044 (± 0.00233)
No Bike infrastructure 0.1808 (± 0.0220) 0.1689 0.1694 (± 0.0175) 0.1592 0.1517 (± 0.0167)
Non-smooth surface 0.1936 (± 0.00866) 0.1699 0.1857 (± 0.00693) 0.1531 0.1514 (± 0.00657)
Wrong way 0.3319 (± 0.0162) 0.3093 0.3393 (± 0.0142) 0.2670 0.2605 (± 0.0128)

Tab. 8: MRS to length for each model. The 95% confidence intervals are given between
brackets.

15.1% MRS between these two attributes. These results suggest that shorter routes are the most
overlapping ones but also the preferred ones by cyclists. The 95% confidence intervals for the
MRSs have a similar width for all models, although slightly smaller for the doubly-differentiable
models, suggesting a higher precision.

Case study 3: Public Transport route choice

We estimated C2 BCM model on a route choice model on the Greater Copenhagen Region’s public
transport network. The dataset includes metro, urban rail (S-train), local trains, regional trains
and busses (see Nielsen et al. (2021)). Anderson (2013) collected the 4,810 observed routes as
part of the Danish travel survey. These observations are separated into work-related trips (2,553
observations) and leisure trips (2,257 observations). The alternatives to the chosen route were
generated using a Doubly-Stochastic method. The attributes and parameters estimates are given
in Table 9. The model does not account for route overlap Nielsen et al. (2021) did not find it a
significant explanatory variable. For each trip purpose, we estimated a MNL, a BCM and a C2

BCM.

Trip purpose Work Leisure

Model MNL BCM C2 BCM MNL BCM C2 BCM

Cost parameters (θ)

IVT
Bus 0.3534 (37.06) 0.3372 0.3272 (30.59) 0.3335 (33.04) 0.3045 0.2809 (25.12)
Metro 0.1377 (6.530) 0.1288 0.1252 (6.588) 0.1000 (4.711) 0.1012 0.0921 (5.624)
Reg. and Intercity train 0.3133 (18.38) 0.2984 0.2884 (17.09) 0.3193 (15.58) 0.2937 0.2716 (14.42)
S-Train 0.2642 (21.81) 0.2500 0.2416 (19.82) 0.2363 (18.48) 0.2184 0.2016 (17.31)
Local train 0.3201 (14.14) 0.3070 0.2988 (13.42) 0.2650 (8.433) 0.2413 0.2192 (7.702)
Transfer components
Nb of Transfers 2.904 (26.87) 2.711 2.613 (22.53) 2.985 (26.42) 2.535 2.312 (18.97)
Transfer walk time 0.2391 (8.408) 0.2228 0.2163 (8.146) 0.2253 (7.266) 0.2198 0.2055 (7.837)
Transfer wait time 0.0545 (10.32) 0.0524 0.0514 (10.25) 0.0488 (9.088) 0.0455 0.0440 (9.206)
Other components
Access time 0.5852 (40.02) 0.5519 0.5345 (30.98) 0.5899 (38.77) 0.5256 0.4839 (25.79)
Egress time 0.5198 (38.81) 0.4908 0.4758 (30.57) 0.5088 (38.16) 0.4474 0.4145 (25.50)
Trip highest headway 0.1666 (21.15) 0.1623 0.1579 (21.49) 0.1474 (19.81) 0.1313 0.1221 (17.84)

Bound (φ) - 1.526 1.641 (47.02) - 1.533 1.638 (66.59)

Final LL -2,391 -2,373 -2,369 -2,623 -2,579 -2,563
Adj. ρ2 0.804 0.805 0.806 0.745 0.749 0.751
N params 11 12 12 11 12 12
Routes cut by bound 0% 90.2% 86.7% 0% 88.9% 85.5%

Tab. 9: Model results for Work and Leisure trips, all parameters are significant at the .001
level

All estimated parameters are significant and corroborate with Nielsen et al. (2021). The bounds cut
out between 85 and 90% of the generated routes. The BCM and C2 BCM estimates are similar,
with a higher relative cost bound for the C2 version. This difference may be attributed to the
probability function smoothness, as choice probabilities increase slower than for the BCM around
the bound. The C2 BCM allows the computation of standard errors and significantly improves the
model fit to the data.

The marginal rates of substitution for Bus IVT are given for each model in Table 10. The 95%
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Trip purpose Work Leisure

Model MNL BCM C2 BCM MNL BCM C2 BCM

IVT
Metro 0.389 (± 0.112) 0.382 0.382 (± 0.108) 0.300 (± 0.119) 0.332 0.331 (± 0.108)
Reg. and Intercity train 0.884 (± 0.0784) 0.885 0.881 (± 0.0817) 0.957 (± 0.103) 0.965 0.967 (± 0.105)
S-Train 0.745 (± 0.0479) 0.741 0.738 (± 0.0480) 0.708 (± 0.0549) 0.717 0.717 (± 0.0522)
Local train 0.904 (± 0.117) 0.911 0.913 (± 0.121) 0.794 (± 0.173) 0.792 0.780 (± 0.184)
Transfer components
Nb of Transfers 8.191 (± 0.656) 8.041 7.985 (± 0.655) 8.949 (± 0.792) 8.324 8.228 (± 0.726)
Transfer walk time 0.674 (± 0.159) 0.661 0.661 (± 0.190) 0.675 (± 0.184) 0.722 0.731 (± 0.180)
Transfer wait time 0.154 (± 0.0302) 0.156 0.157 (± 0.0305) 0.145 (± 0.0325) 0.150 0.157 (± 0.0338)
Other components
Access time 1.651 (± 0.0789) 1.636 1.633 (± 0.0778) 1.769 (± 0.0969) 1.726 1.722 (± 0.0896)
Egress time 1.466 (± 0.0736) 1.456 1.454 (± 0.0713) 1.525 (± 0.0846) 1.469 1.475 (± 0.0764)
Highest headway in trip 0.470 (± 0.0487) 0.481 0.482 (± 0.0469) 0.442 (± 0.0487) 0.431 0.435 (± 0.119)

Tab. 10: MRS for Bus IVT, the 95% confidence intervals are given between brackets

confidence intervals have been calculated for the MNL and C2 BCM. Every model outputs similar
MRS for both purposes. People have a large preference for the metro, and the bus is the least
preferred transport mode. They do not like transfers and slightly prefer egress time over access
time.

4 Conclusion

The C2 BCM is a new choice model that improves on the BCM by making it doubly differentiable.
This allows for calculating standard errors, confidence intervals and elasticities, which is impossible
with the original BCM. The C2 BCM was found to provide better fits to the data than MNL in
all the case studies, and it was also found to outperform the original BCM. This is likely due to
the smoother shape of the probability function. The C2 BCM also has the advantage of implicitly
selecting the alternatives that individuals do not consider, which is helpful in interpreting an
individual’s consideration set. Finally, the C2 BPS model, which combines the C2 BCM with the
Bounded Path Size (BPS) route choice model, was found to outperform both MNL and C2 BCM
in route choice cases. This highlights the importance of dealing with correlation and infeasible
routes in generated choice sets.
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