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Short summary

This paper explores the enhancement of ramp metering strategies using data from connected vehi-
cles (CVs), specifically targeting non-recurrent bottlenecks caused by traffic accidents. Traditional
ramp metering, which relies on fixed sensors for feedback control, is often ineffective in manag-
ing these unpredictable, distant bottlenecks. However, this issue may become more tractable in
a CV environment, as CVs can serve as mobile sensors, providing broader spatial coverage and
generating more granular speed and position data. In this paper, we proposed using CV data to
estimate bottleneck-related traffic states for implementing feed-forward ramp metering algorithms
that addresses congestion around distant bottlenecks. Our method was tested and validated in a
micro-simulation model, across various CV scenarios, with different market penetration scenarios.
The findings indicate improved traffic mobility and more effective responses to accident-induced
bottlenecks in a CV-enhanced ramp metering system both at the local and system level.
Keywords: Connected vehicles, Traffic management, Ramp metering, Traffic simulation

1 Introduction

The recent advances in connected vehicles (CVs) have enabled the generation and sharing of more
fine-grained data, such as Basic Safety Messages (BSMs) (Vasudevan et al., 2022). This develop-
ment presents an opportunity to enhance traffic management strategies aimed at improving traffic
flow and safety. The access to granular vehicle-level data enables more accurate estimations of
traffic states, even in mixed traffic consisting of CVs and non-CVs (Wang et al., 2022). Conse-
quently, this leads to a refinement of control implementations.

A review of the existing literature reveals that main limitations identified in the existing ramp
metering control include inaccuracies in vehicle position leading to unreliable queue estimations,
and inadequate detection coverage by fixed infrastructure (e.g, loop detectors), resulting in a lack
of accurate situational awareness of changing road conditions (Vasudevan et al., 2024)]. To ad-
dress these limitations, current research in ramp metering with CV data has employed various
approaches. For instance, some studies have applied deep reinforcement learning that directly
handles high-dimensional inputs to implement ramp metering (Hou et al., 2021). Others have
investigated coordinated control among multiple on-ramps (Zhao et al., 2019; Heshami & Kattan,
2021), or together with other control strategies such as vehicle lane changing (Tajdari et al., 2020).

However, it is important to note that these studies primarily focus on using CV data-aided ramp
metering for recurrent congestion or bottlenecks near ramps. The challenge increases significantly
when dealing with a distant bottleneck located far downstream from the ramp. In such case,
when metered traffic reaches the distant downstream bottleneck, the state of the bottleneck may
have significantly changed from the time it was initially assessed for computing the metering rate
(Zhou et al., 2020). The lengthy travel time between the ramp and the bottleneck introduces time-
delay effects, which poses substantial stability challenges. This raises the need for more dynamic
and informative ramp metering strategies that can effectively handle such complex traffic scenarios.
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This study introduces a new approach in enhancing both local and system-wide ramp metering
algorithms using BSM data from CVs, particularly targeting freeway operations affected by distant
bottlenecks (e.g., by traffic accidents). The innovative aspect of this research lies in integrating
feed-forward control into feedback ramp metering, coupled with the design of the control algorithm
that incorporates more precise traffic information from CV data, including flow, travel time, and
density, around incidents to manage distant bottlenecks effectively. Traditionally, such information
from a distant bottleneck is often “unknown” or inaccurate given traditional sensors. Consequently,
this paper demonstrates how to develop an improved freeway operation strategy that leverages the
advantages of CV data as supplemental input into the ramp metering algorithms.

2 Methodology

This section first introduces state-of-the-practice local and system-wide ramp metering. Then we
present the methods of using CV data to estimate traffic states related to distant bottlenecks. It
is followed by enhancement of the ramp metering algorithms given those estimations.

State-of-the-practice ramp metering algorithms

Figure 1: Practical sensor layout required by ALINEA.

We start from locally responsive ramp metering, for which ALINEA is one of the most widely-used
algorithms (Papageorgiou et al., 1991). ALINEA exploits the occupancy measured by induction
loops, typically downstream of the on-ramp (Figure 1). For on-ramp i, the metering rate (vehicles
per hour) at time step t as per the ALINEA algorithm, denoted by rloci (t), is given by

rloci (t+ 1) =rloci (t) +Ki(ô
main
i − omain

i (t)) (1a)

rloci (t+ 1) =max{min{rloci (t+ 1), Rmax
i }, Rmin

i }, (1b)

where Ki is the control gain, omain
i (t) is the measured mainline occupancy, ômain

i is the corre-
sponding critical occupancy, namely the optimal occupancy, Rmax

i and Rmin
i are the maximum and

minimum metering rates, respectively. Clearly, equation (1a) indicates that higher occupancy mea-
surements lead to lower metering rates. Equation (1b) shows that the metering rate is bounded by
the maximum and minimum metering rates to avoid the well-known wind-up effect (Papamichail
& Papageorgiou, 2008).

In practice, to avoid the spillover of on-ramp queues into surrounding urban streets, queue override
strategy can be added to the ALINEA algorithm (Smaragdis & Papageorgiou, 2003). This strategy
takes into account the occupancy measured at the on-ramp entry, as depicted in Figure 1. Formally,
for on-ramp i, the queue override strategy is given by:

rqoi (t) =

{
Rmin

i if oramp
i (t) ≤ ōramp

i ,

Rmax
i if oramp

i (t) > ōramp
i ,

(2)

where ōramp
i is the occupancy threshold, and oramp

i (t) is the occupancy measured at the on-ramp
entry. Finally, for on-ramp i, the metering rate r̃loci (t) is designed by

r̃loci (t) = max{rloci (t), rqoi (t)}. (3)
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The control law above implies that the metering rate from ALINEA will be overridden if there are
too many queueing vehicles at the on-ramp.

Next, we present the system-wide ramp metering, Heuristic Coordinated Ramp Metering (HERO),
whose control efficacy has been verified in the field test (Papamichail et al., 2010). HERO utilizes
localized ramp metering, such as ALINEA, for individual on-ramps when coordination is not re-
quested; but also includes a heuristic coordination mechanism to coordinate consecutive on-ramps;
see Figure 2. Details about the coordination rule are available in Papamichail et al. (2010).

Figure 2: HERO coordinating consecutive on-ramps.

Once on-ramps i and j are coordinated, with on-ramp i as the subordinate and on-ramp j as the
master, HERO computes the minimum queue length to be maintained at on-ramp i, wmin

i (t), and
the coordinated metering rate for on-ramp i, denoted by rcoi (t), as follows:

wmin
i (t) =

wi(t) + wj(t)

wmax
i + wmax

j

wmax
i , (4a)

rcoi (t) =− 1

T
(wmin

i (t)− wi(t)) + qini (t− 1), (4b)

rcoi (t) =max{min{rcoi (t), Rmax
i }, Rmin

i }, (4c)

where wi(t) (resp. wj(t)) denotes the queue length at on-ramp i (resp. j), wmax
i (t) (resp. wmax

j )
denotes the maximum queue length allowed at on-ramp i (resp. j), T is the control period and
qini (t − 1) is the flow measurement at the on-ramp entrance at time step t − 1. The equations
(4a)-(4b) above indicate that when on-ramp j has a relatively long queue and high downstream
occupancy, HERO attempts to maintain a queue with the length of wmin

i (t) at on-ramp i by
enforcing the metering rate rcoi (t). Besides, the equations (4a)-(4b) imply ramp queue length needs
to be estimated from induction loops. Details of the estimation method are available in Papamichail
et al. (2010). HERO also introduces queue control to avoid too many vehicles accumulating at
on-ramps, namely

rqci (t) =− 1

T
(wmax

i − wi(t)) + qini (t− 1), (5a)

rqci (t) =max{min{rqci (t), Rmax
i }, Rmin

i }. (5b)

For on-ramp i, the final metering rate is specified as follows:

r̃coori (t) =

{
max{min{rloci , rcoi (t)}, rqci (t), rqoi (t)} if i is coordinated,
max{rloci (t), rqci (t), rqoi (t)} if i is not coordinated.

(6)

Bottleneck information extracted from CV data

The following introduces how to extract bottleneck information from CV data, which is a pre-
requisite for enhancing the aforementioned ramp metering algorithms for distant bottlenecks. We
consider i) vehicle flow entering and exiting the distant bottleneck, ii) travel time from the on-ramp
to the bottleneck, and iii) traffic density around the bottleneck; see Figure 3. This paper primarily
concentrates on improving ramp metering after traffic accidents happen or are detected. We first
use CV data to estimate the traffic flows entering the bottleneck. Those leaving the bottleneck
can be estimated in a similar way. Consider a bottleneck illustrated in Figure 3. We denote the
tail boundary as follows:

Stail(x, y) = (xt
2 − xt

1)(y − yt1)− (yt2 − yt1)(x− xt
1). (7)

Therefore, we have Stail(x, y) < 0 for any downstream position (x, y) and Stail(x, y) > 0 for any
upstream position (x, y). This helps determine vehicle locations relative to the bottleneck tail.
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Figure 3: Layout of a distant bottleneck, induced by accidents, downstream of an on-ramp.

Given a set of the CV data collected in a period ∆ with N vehicle identifiers, we analyze if there
exist two consecutive data points such that one is recorded upstream of the bottleneck tail and the
other one downstream of the bottleneck tail, for vehicle n = 1, 2, · · · , N . If these data points are
identified, we recognize the vehicle passed the boundary during the observation period. Letting
N tail denote the total number of vehicles having passed the tail boundary in the period ∆, we
obtain the measured flow as follows

q̃in = N tail/∆. (8)

Clearly, due to limitation of CV market penetration rates, potential communication errors and
equipment failures, the measured flow q̃in can be biased. To address this issue, we utilized induction
loop data as a calibration method to reduce the bias. Consider a road section that is already
equipped with existing induction loops, e.g., near the on-ramp. From induction loops, we can
acquire flow measurements q1, q2, · · · , qM at time steps 1, 2, · · · ,M , to be used as an approximation
of the ground truth. At the same time, we apply the estimator (8) to obtain q̃1, q̃2, · · · , q̃M to
compute a calibration ratio γflow as follows:

γflow =
1

M

M∑
m=1

q̃m/qm. (9)

Using this calibration ratio, we are able to estimate the flow into the bottleneck by rescaling q̃in:

qin = q̃in/γflow. (10)

For estimating the travel time, let a closed set X ob denote the road segment fron the on-ramp to
the bottleneck tail, e.g. the region bounded by the points (xo

1, y
o
1), (xo

2, y
o
2), (xt

1, y
t
1) and (xt

2, y
t
2)

in Figure 3. Assume that the collected CV data has In records for vehicle n = 1, 2, · · · , N . The
travel time from the on-ramp to the bottom tail is estimated by

τob = Lob

∑N
n=1

∑In
i=1 IX ob((xn,i, yn,i))∑N

n=1

∑In
i=1 vn,iIX ob((xn,i, yn,i))

, (11)

where Lob is the distance from the on-ramp to the bottleneck tail, vn,i denotes the speed of vehicle
n by the i-th record, (xn,i, yn,i) represents the location of vehicle n by the i-th record, and the
indicator function implies whether vehicle n generates the i-th record in the region X ob, namely

IX ob((xn,i, yn,i)) =

{
1 vehicle n locates in X ob at step i,

0 vehicle n does not locate in X ob at step i.
(12)

Finally, the following illustrates the estimation of traffic density around the bottleneck. Let a
closed set X b denote the bottleneck region, e.g. the road segment bounded by the points (xt

1, y
t
1),

(xt
2, y

t
2), (xh

1 , y
h
1 ) and (xh

2 , y
h
2 ) in Figure 3. We can obtain the CV density as follows:

ρ̃b =
1

Lb∆

N∑
n=1

In∑
i=1

IXb((xn,i, yn,i)), (13)

where Lb denotes the bottleneck length, and ∆ is the observation period of the CV data. Clearly,
ρ̂b is a biased estimation of real traffic density due to the limitation of CV market penetration
rates, communication errors and equipment failures. Similarly, as calibrating q̃in given by (8), we
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can correct it using the calibration ratio approach:

γden =
1

M

M∑
m=1

ρ̃bm/ρbm, (14a)

ρb =ρ̃b/γden, (14b)

where γden is a rescaling factor that quantifies the differences between the densities of real traffic
and the CV data at the bottleneck. Note that the ground truths of traffic densities can be estimated
from induction loops or measured by camera sensors.

Enhanced ramp metering algorithms

Our enhanced algorithms are inspired by the feed-forward ALINEA (FF-ALINEA) that was pro-
posed to resolve nearby and distant bottlenecks (Frejo & De Schutter, 2018). It is important to
note that FF-ALINEA still relies on induction loops, and in this paper, we present the CV data-
aided ramp metering algorithms. We first consider locally responsive ramp metering. Suppose
there is a distant bottleneck downstream of on-ramp i. The metering rate for the bottleneck is
given by

rffi (t+ 1) =rffi (t) +Kff
i (ρ̂

b
i −max{τobi (t)(qb,ini (t)− qb,outi (t)), 0} − ρbi (t)), (15a)

rffi (t+ 1) =max{min{rffi (t+ 1), Rmax
i }, Rmin

i }, (15b)

where rffi (t) denotes the metering rate, Kff
i is the control gain, ρ̂bi denotes the critical density

around the bottleneck, the travel time τobi (t) is given by the estimator (11), flows into and out of
the bottleneck are given by the estimator (10), and the density is given by the estimator (14b).
Note that (15a) indicates that the density setpoint around the bottleneck is time-varying, i.e.,

ρ̂bi −max{τobi (t)(qb,ini (t)− qb,outi (t)), 0} (16)

More explanations about the density setpoint can be found in Frejo & De Schutter (2018). The
final metering rate can be calculated as follows:

r̃loc∗i (t) = max{min{rloci (t), rffi (t)}, r
qo
i (t)} (17)

Clearly, the enhanced system-wide ramp metering algorithm is obtained by incorporating the feed-
forward ALINEA, given by the control law (15a)-(15b). In instances where a traffic incident occurs
downstream of on-ramp i, the ramp metering rate is adjusted accordingly as follows:

r̃coor∗i (t) =

{
max{min{rloci (t), rffi (t), r

co
i (t)}, rqci (t), rqoi (t)} if i is coordinated,

max{min{rloci (t), rffi (t)}, r
qc
i (t), rqoi (t)} if i is not coordinated.

(18)

3 Results and discussion

In this section, we first describe the setup of our case study and then provide a traffic performance
evaluation in terms of i) travel time per vehicle, and ii) speed distribution maps.

Experiment setup

For the case study, we consider a 9.1-mile stretch of Interstate 210 Eastbound (I-210 E), which
typically comprises four general-purpose traffic lanes and includes 13 on-ramps and 12 off-ramps.
Figure 4 illustrates the simulated network in SUMO.

The PM peak period (2:00 PM-7:00 PM), was selected as the study period to evaluate ramp me-
tering strategies, during both peak shoulder and peak hours. Following the FHWA’s simulation
guidance (Wunderlich et al., 2019), we calibrated the microsimulation model using a representa-
tive day approach by utilizing traffic flow and speed data from August 12, 2019. This day has a
representative congestion pattern given two incidents, one occurring from 17:10 to 17:50 and the
other one from 17:40 to 18:30. The simultaneous perturbation stochastic approximation (SPSA)
method (Lee & Ozbay, 2009), due to its efficient approximation of the gradient of the objective
function, was applied to calibrate critical parameters (e.g., minimum gap, reaction time, headway
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Study corridor

Accident occurred 
from 17:40 to 18:30

Accident occurred 
from 17:10 to 17:50

Figure 4: Study corridor of Interstate 210 and locations of traffic accidents.

and lane-changing parameters) automatically to minimize the discrepancy between the simulated
and observed performance measure estimates; see Figure 5. The automatic calibration process
achieved an acceptable accuracy for the four local and system criteria (Wunderlich et al., 2019)
(i.e., time-variant inliers/outliers and bounded dynamic absolute and systematic error) for traffic
flow and speed.

Figure 5: Flowchart of the simulation calibration process.

We defined alternate scenarios by varying CV market penetration, CV roadside infrastructure
deployment rates, equipment failure rates, and communication error rates. The settings of each
scenario are listed in Table 1. Besides these three scenarios, we consider two benchmarks where
the ALINEA and HERO are utilized, respectively.

Comparison of travel time per vehicle

Travel time per vehicle is obtained from dividing total travel time spent, including on-ramp waiting
time by all vehicles finishing trips during the time window. Tables 2 and 3 present the results in
different scenarios. For local ramp metering, the results indicate that the enhanced algorithm leads
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Table 1: Scenarios of CV environment settings.

Parameters Scenario 1 Scenario 2 Scenario 3
CV Market Penetration Rates 20% 50% 75%

CV Infrastructure Deployment levels 20% of ramps 50% of ramps 80% of ramps
Communication Error Rates 10% 30% 30%

Equipment Failure Rates 15% 9% 3%

to shorter average travel times from 17:30 to 19:00 for Scenario 2 and Scenario 3, with an average
reduction of 2.5% in Scenario 2 and of 3.5% in Scenario 3 compared to the baseline scenario. As
for system-wide ramp metering, the results show a reduction in average travel time per vehicle in
Scenario 1, 2, and 3 of 1.3%, 2.3%, and 6.3% respectively, compared to the baseline scenario.

Table 2: Changes in average travel time per vehicle (in seconds) under locally responsive
ramp metering.

Benchmark Scenario 1 Scenario 2 Scenario 3
17:15-17:30 990 994 (+0.4%) 991 (+0.1%) 993 (+0.3%)
17:30-17:45 1024 1044 (+2.0%) 990 (-3.3%) 980 (-4.3%)
17:45-18:00 1085 1113 (+2.6%) 1091 (+0.6%) 1058 (-2.5%)
18:00-18:15 1326 1320 (-0.5%) 1284 (-3.2%) 1263 (-4.8%)
18:15-18:30 1334 1345 (+0.8%) 1305 (-2.2%) 1279 (-4.1%)
18:30-18:45 1186 1197 (+0.9%) 1148 (-3.2%) 1137 (-4.1%)
18:45-19:00 810 771 (-4.8%) 754 (-6.9%) 772 (-4.7%)

Avg. reduction +0.4% -2.5% -3.5%

Table 3: Changes in average travel time per vehicle (in seconds) under system-wide ramp
metering.

Benchmark Scenario 1 Scenario 2 Scenario 3
17:15-17:30 990 993 (+0.3%) 976 (-1.4%) 976 (-1.4%)
17:30-17:45 1012 983 (-2.9%) 983 (-2.9%) 938 (-7.3%)
17:45-18:00 1086 1057 (-2.7%) 1057 (-2.7%) 1016 (-6.4%)
18:00-18:15 1298 1286 (-0.9%) 1283 (-1.2%) 1229 (-5.3%)
18:15-18:30 1282 1262 (-1.6%) 1257 (-2.0%) 1128 (-12.1%)
18:30-18:45 1183 1229 (+3.9%) 1160 (-1.9%) 1182 (-0.1%)
18:45-19:00 743 687 (-7.5%) 700 (-5.8%) 643 (-13.5%)

Avg. reduction -1.3% -2.3% -6.3%

Comparison of speed distribution maps.

Figures 6 and 7 illustrate spatial-temporal freeway mainline speed. As we can see in Figure 6,
the CV data-aided locally responsive ramp metering slightly reduced the severity of the congestion
between milepost 36 and 38 in Scenario 3 and the tail of the congestion between milepost 31 and 34
in both Scenario 2 and Scenario 3. However, the changes in the length and severity of bottleneck
are marginal in Scenario 1. The enhanced system-wide ramp metering further reduced the severity
of congestion between milepost 36 and 38 and that between milepost 31 and 34 in both Scenario
2 and Scenario 3. However, similarly to the results from the enhanced locally responsive ramp
metering, there is little change in the length and severity of the bottleneck in Scenario 1.

4 Conclusions

In this paper, we proposed using CV data to extract information of distant bottlenecks, induced
by traffic accidents, and refining ramp metering algorithms for those bottlenecks. Our method,
validated through traffic simulations with emulated BSMs mimicking real-world CV message ex-
changes, demonstrated that CV data-aided local and system-wide ramp metering algorithms can
improve freeway mobility under various conditions, including varying CV market penetration and
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Figure 6: Speed distribution maps under locally responsive ramp metering.

Figure 7: Speed distribution maps under system-wide ramp metering.

infrastructure deployment levels. These findings highlight the potential for improving freeway sys-
tems in a CV-enabled environment. It should be noted that the proposed estimation methods are
still in an open-loop manner and it is worth investigating control-theoretical approaches to design
robust observers for acquiring bottleneck states.
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