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Short summary

Unplanned service disruptions often occur on Public Transit (PT), with different levels of intensity.
Growing urbanization and environmental issues are two main factors that put increasing pressure on
PT. Therefore, service disruptions are expected to occur more often, maybe with tougher impacts
than before on public transport demand. In this context, it is valuable to provide insights to PT
operators, to develop suitable disruption management strategies. Using four different sources of
data (counting, disruption, Automatic Fare Collection and Automatic Vehicle Location data), this
paper intends to assess PT robustness, vulnerability and performance of bus bridging strategies
towards subway disruptions. The case study introduced in this paper focuses on two of the most
severe disruptions which took place between September 15th 2022 and October 15th 2022 on 7
stations of subway line A of Lyon (France). Findings indicate the valuable contribution of bridging
buses, that strengthen PT robustness. The major stations rely more on alternative modes that
are already available, whereas the minor stations mostly rely on bridging buses. This indicates the
need for supply-based management strategies in these areas. Results also show the importance of
having efficient buses, that substantially reduce the vulnerability of stations. Above all, this work
intends to give a scalable framework to assess the efficiency of disruption management strategies.
Keywords: robustness, vulnerability, public transit, disruptions, bridging bus

1 Introduction

Metropolitan areas are facing environmental and demographic challenges, leading more inhabitants
to use mobility services within these dense areas while public authorities are pursuing policies
discouraging the use of individual and polluting modes of transportation such as cars. In Lyon,
France, several decisions have been taken by public authorities that strongly incentivize citizens to
use Public Transit (PT) (French Parliament, 2019, 2021; SYTRAL Mobilité, 2020). In this context
of hard promotion and constant evolution, PT system of Lyon is under pressure and highly subject
to unplanned disruptions. Therefore, PT operators have a significant interest in improving service
quality, especially during disruptions that substantially affect costumers’ perception of PT.
Unplanned disruptions occur spontaneously due to various factors; the most recurrent being rolling-
stock or infrastructure damages, incivilities or safety issues. These events and their characteristics,
namely duration, intensity, and location are often unknown in advance, which makes their real-
time management challenging. From the PT operators’ perspective, two kinds of strategies can be
implemented, together or independently, to manage unplanned disruptions:

• Supply-oriented strategies, which rely on providing alternative PT supply to overcome
the disruption, especially Bus Bridging (BB) services (Deng et al., 2018; Yin et al., 2018)

• Demand-oriented strategies, which essentially rely on providing relevant information to
users (Leng & Corman, 2020; Drabicki et al., 2021; Rahimi Siegrist & Corman, 2021; Mo et
al., 2022).

This work aims to provide a comprehensive framework that can be applied to assess both kinds of
strategies and help PT operators understand demand fluctuations. A first analysis of disruption
management strategies in Lyon shows that these are often supply-based and focus on providing BB
when the subway service is disrupted. Demand-based strategies are limited and only give insights
on whether the subway line is disrupted or not, but very little information on the duration of the
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disruption or other PT alternatives available nearby. For this reason, we focus in this research on
the investigation of BB by addressing two research questions:

• What are the impacts of Bus Bridging (BB) strategies on demand under unplanned disrup-
tions?

• More generally, what measures can be used and implemented to any kind of disruptions’
management strategies ?

To answer these questions, we will focus on the concepts of robustness and vulnerability as
defined by Rodríguez-Núñez & García-Palomares (2014), which give information about how the
PT system reacts during disruptions. Robustness describes the ability of the PT system to absorb
the shock in demand, while vulnerability refers to the effort that needs to be consented to keep
the same levels of demand. We will also implement a measurement of the performance of PT
network under disruption based on the average speed of the mode considered.
This work distinguishes itself from existing literature in three main aspects. First, we rely on a
rich data set collected in Lyon, which includes information on disaggregate travel demand and PT
disruptions along their characteristics for all PT modes (subway, tramway, and bus). Second, we
assess the robustness, the performance and the vulnerability of the subway network in Lyon using
different indicators that can be transferred to other PT systems or case studies. Third, we propose
a multimodal framework, including spillovers from subway to others PT mode (tramways, bus and
BB services).

2 Methodology

The goal of the study is to compare trips’ characteristics during a disruption with the same char-
acteristics during a reference period (i.e. without disruptions). First, we propose a definition of
a reference period. Second, we define the spatial boundaries of the study (i.e. the service area)
and the trips’ attributes that are used in this work. Third, once trips are defined, different sets
of trips are considered, whether they start and end in the service area or not. Finally, for each
station studied, three aggregated indicators are introduced, that respectively assess robustness,
vulnerability and performance.

Definition of a reference period

The reference period is defined as a disruption-free period. This period is considered as the steady
state of PT, which we want to compare with the disrupted state. The reference period is further
characterized by distinguishing: (i) workdays from weekends and (ii) school holidays from the
rest. Normal demand fluctuations are observed during weekends and holidays (Egu & Bonnel,
2021) that are not related to disruptions and need, as such, not to be confused with demand
disruption. This yields 4 reference periods during each of which PT demand patterns are deemed
similar. Consequently, travel demand during a disruption occurring on a day j at an exact time t
is compared to the demand of the same time t of a similar normal period to the day j.
In the following, trips observed during a disruption period i will be compared to trips observed
during the corresponding reference period ref . Next sections focus on the selection of relevant
data for disruptions’ analysis.

Trips’ selection procedure and attributes

Let a disruption occur on a subway line L. AL = [a1, a2, ..., an] is the set of n stations of this line.
For each subway station a ∈ AL, we define the set Ba of reachable PT stops that are located within
a walkable distance w from station a. The resulting area centered on station a is called the service
area. These stops can be subway (other than line L), tramway, or bus stops. We suppose that Ba

is the set of alternative stops that can reasonably be used as an alternative to L when a disruption
hits stop a. We only assign the closest subway station a to each b ∈ Ba. At the line level, the
whole set of reachable stops BL = [b1, b2, ..., bm] is defined as the union of the disjoint sets Ba.
In Lyon, the Automatic Fare Collection (AFC) system collects data only when demand taps-in.
The destination of PT users is unknown. A three-step method based on by Egu & Bonnel (2020)
is used to overcome this issue. First, the inference procedure is used to infer the destination d and
the arrival time td for each validation at an origin stop o at time to. Let’s denote this trip leg
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(o, d). Second, trip chaining allows to associate N trip legs (ok, dk), k ∈ J1;NK and build a whole
trip from origin O to destination D, such as a trip (O,D) is defined as mentioned in equation 1:

(O,D) =

N⋂
k=1

(ok, dk) (1)

Third, each trip is weighted using counting data. We end up with a weight score associated to each
reconstructed trip, that will be used as the final Number of Trips (NT ). Two other attributes
result from the whole procedure: Journey Time (JT ) is defined as the difference between original
time tO and destination time tD and Trip Length (TL) is calculated as the number of subway
stations that are crossed during a trip. For trips in BL, TL is also calculated using the number of
associated subway stations that are crossed.

Sets of trips considered

Disruptions can have different impacts on PT trips depending if these trips were planned to be
exclusively performed on the disrupted line or with transfers involving this line. Accordingly, the
trips can be divided into two categories (Figure 1): the first group includes all trips starting from
and ending within the service area of the disrupted subway line (grey circles in Figure 1). These
trips as said to be direct. The second case corresponds to trips that include at least one transfer
within the service area of the subway line. These trips as said to be non-direct.

Figure 1: Cases considered in the study: direct trips (case 1) refer to trips that start and end at a stop
close to a subway station; non-direct (case 2) trips refer to trips including a direct trip, with transfers
before and/or after reaching a stop close to a subway station.

Evaluation of robustness, vulnerability and performance under disruption

Three indicators are used in this work to measure the impact of disruption on travel demand and
to evaluate supply-oriented disruption management strategies. First, robustness (R) is measured
using the percentage of disruption spillover. We evaluate spillovers by retrieving the Number of
Trips (NT ) starting from station a that switch to stops b ∈ Ba during disruption’s interval of time
∆i. We compare the difference between NT at stops b during disruption i and NT during reference
period ref at stops b, to the number of trips NTref at associated station a during reference period
ref . We also add to this equation the number of trips made from station a during disruption i,
which is expected to be close to zero but must be taken into account. This variation is calculated
using for each subway station a and disruption i using the ratio in equation 2. R(a, i) can be
interpreted as the share of lost demand at station a, absorbed by stops b ∈ Ba during disruption
i. Robustness, when normalized for a station, varies in the range of (0-1) where a higher value
indicates higher robustness of the station during a disruption.

R(a, i) =

∑
b∈Ba

∑
t∈∆i

[
NT (b, t)i −NT (b, t)ref

]
+

∑
t∈∆i

NT (a, t)i∑
t∈∆i

NT (a, t)ref
(2)

Second, vulnerability (V) is measured as the excess in the average journey time. We obtain this
indicator by comparing the average Journey Time (JT ) of alternative trips using stops b ∈ Ba

during disruptions with the average JT of regular trips using subway station a, over the disruption
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period ∆i. Values of JT are weighted by NT of each trip. As shown in equation 3, V (a, i) can
be interpreted as the mean additional amount of time needed to reach a destination in AL under
disruption i, starting a trip at b instead of a. Vulnerability, when normalized for a station, varies
in the range of (0-1) where a higher value indicates higher vulnerability of the station during a
disruption.

V (a, i) =

∑
b∈Ba

∑
t∈∆i

JT (b, t)i.NT (b, t)i∑
b∈Ba

∑
t∈∆i

NT (b, t)i
−

∑
t∈∆i

JT (a, t)ref .NT (a, t)ref∑
t∈∆i

NT (a, t)ref
(3)

Finally, we use a performance metric (P) which is calculated for each trip as the ratio between
TL (i.e. the distance) and JT (i.e. the journey time). The performance metric is then averaged
using NT as a weight. As shown in equation 4, P (a, i) gives a notion of the average speed of
all alternative modes starting from b ∈ Ba. In this study we will be particularly interested in
comparing performance between BB and other modes available under disruption. Performance,
when normalized for a station, varies in the range of (0-1) where a higher value indicates higher
performance of the station during a disruption.

P (a, i) =

∑
b∈Ba

∑
t∈∆i

NT (b, t)i.
TL(b, t)i

JT (b, t)i∑
b∈Ba

∑
t∈∆i

NT (b, t)i
(4)

3 Results and discussion

Case study

We use enriched data, combining AFC, Automatic Vehicle Location (AVL) and counting data to
retrieve trips from September 15th 2022 to October 15th 2022, and end up studying a total of 1 472
890 trips. During this period, two major disruptions occurred on all the subway lines. The first
disruption occurred on October 6th 2022 between 15:51 and 20:03 (Disruption 1) and the second
one occurred on October 14th 2022 (Disruption 2) between 17:21 and 20:25. During these periods,
the operator provided BB as subway alternatives. The reference period has been defined using 17
days not included in these disruption periods and not impacted by other minor disruptions.
In this research, we focus on a single subway line (line A) to demonstrate the contribution of our
research. This study can be easily transferred to the rest subway lines. Line A has 14 stations.
However, only 7 of them have been covered by BB during the disruptions, namely SOI, BON CUS,
FLA, GRA, REP and CHA. For these n = 7 subway stations, a total number of m = 77 alternative
stops have been identified within their service area, defined by distance threshold w = 500m.
Table 1 indicates the number of alternative stops for each subway station and the station’s weight
according to counting data (the higher the score, the more users are counted at this station).
Results are shown using radar plots in Figure 2. For each radar plot, the left-hand side indicates
value of all indicators in the case of direct-trips (1), while the right-hand side shows the value of
the same indicators for non-direct trips (2). Robustness (R), Vulnerability (V) and Performance
(P) have been normalized using min-max function at the station level.

Subway station (a) SOI BON CUS FLA GRA REP CHA
Number of alternative stops (b) 23 12 2 9 12 2 17
Station’s weight 0.16 0.11 0.07 0.09 0.14 0.07 0.36

Table 1: Numbers of alternative stops associated with each subway station belonging to line A, where the
bus bridging strategy has been implemented. Station’s weight is calculated as the share of each station in
the counting data during the reference period. Stations are sorted according to their location.

Results and discussion

Robustness: Raw value (i.e. before normalization) of robustness for the considered stations is
estimated to lie between 20% (for disruption 2) and 24% (for disruption 1), meaning that the
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alternatives stops absorb between 1 trip out of 5 and 1 trip out of 4 of all the trips impacted by
the disruption on the subway line.
Without providing for BB, the robustness index is high for stations that have a combination of a
high number of alternative stops and a high station’s weight. The CHA station (table 1) has the
highest robustness index (between 0.25 and 0.48), followed by BON (0.11 and 0.17 for direct trips
and 0.53 and 0.73 for non-direct trips) and SOI (0.07 for direct trips and between 0.21 and 0.31
for non-direct trips). Despite having characteristics relatively similar to that of BON (see Table
1), GRA has a lower robustness (between 0 and 0.06). These values are closer to REP (between 0
and 0.01), FLA (between 0 and 0.02) and CUS (0.01 and 0.02 for direct trips). CUS has relatively
a higher robustness (0.11 and 0.15) for non-direct trips.
The deployment of BB increases the robustness of the PT system. BB significantly improve the
robustness for stations that have low robustness in the reference scenario: between 79% and 100%
of robustness in bus bridging scenario is due to the presence of this mode of transit for FLA, GRA
and REP. This contribution is between 23% and 70% for SOI, BON and CHA. BB have a sparser
impact on CUS, with values that lies between 50 and 85%.
From this result emerges two groups of stations: the set of “major” stations composed of SOI, BON
and CHA, that have a relatively high robustness index without bus bridging strategies, and the set
of “minor” stations for which bus bridging strategies substantially improve the robustness, even if
robustness values are still low.
Vulnerability & Performance: As the vulnerability index is based on journey time, it is impor-
tant to distinguish short trips (i.e. direct trips) from long trips (i.e. non-direct trips). For direct
trips and non-direct trips, raw values (i.e. before normalization) of vulnerability are respectively
estimated to 16 and 25 minutes for disruptions 1, and 9 and 17 minutes for disruption 2. These
values correspond to the average additional journey time that a user should expect to endure under
a disruption.
From direct trips’ perspective, when BB improve performance index at CUS, FLA, GRA or REP,
vulnerability substantially decreases. This statement does not hold for major station like CHA,
BON and SOI, where performance of BB have less importance in the set of alternative stops
available. From non-direct trips perspective, vulnerability index increase in most case, regardless
of the evolution of performance index. Decrease in vulnerability are observed for FLA, REP and
GRA (maximum 0.06 points of difference). This observation can be explained with two hypothesis.
First, vulnerability increases for non-direct trips because better options are available. The starting
and/or the ending point of these trips are usually located far from subway stations. During reference
period, it is rational to reach a subway station. However, when the subway is not available, other
routes appear more relevant to the user rather than reaching a subway station and taking a BB.
Second, from minor station as FLA, REP and GRA, it can be worth using a less efficient mode
such as BB, as few options are available for the chosen route.
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Figure 2: Radar plots - The left-hand and right-hand side shows the Robustness (R), Vulnerability (V)
and Performance (P) indicators in the case of direct-trips and non-direct trips respectively. The red and
blue curves correspond to a disruption management strategy with and without BB respectively. Disr.1
stands for the disruption occurring on October 6th 2022 and Disr.2 stands for the disruption occurring on
October 14th 2022
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4 Conclusions

This paper addresses the following questions: what are the impacts of Bus Bridging (BB) strategies
on demand under unplanned disruptions? What measures can be used and implemented to any
kind of disruptions’ management strategies ? First, trips are retrieved using Automatic Vehicle
Location (AVL), Automatic Fare Collection (AFC) and counting data. Relevant trips are filtered
with a distance threshold, and split into two categories which are direct trips and non-direct trips.
Second, three indicators are set up in order to assess the impact of subway disruptions, evaluating
respectively robustness, vulnerability and performance. Finally, this methodology has been applied
to two major disruptions, focusing on the implementation of bus bridging strategies and comparing
the evolution of the chosen indicators in both cases.
Results highlight the valuable contribution of BB, that strengthen PT robustness. The major
stations (CHA, SOI, BON) rely more on alternatives stops that are already available, whereas
minor stations (CUS, FLA, GRA, REP) mostly - and sometimes fully - rely on BB. This indicates
the need for supply-based management strategies in these areas. Findings also show the importance
of having efficient buses, that substantially reduce the vulnerability of stations. For the set of minor
stations, when BB improve the performance of alternative options available around a subway
station, a decrease in vulnerability is observed for direct trips. This observation does not hold
for the set of major stations, where performance of other alternative stops have a more significant
impact on vulnerability. For non-direct trips, values of vulnerability mostly increase with bus
bridging strategies, regardless the value of performance index. The work on these trips needs to
be further investigated as their starting and ending point are out of the service area defined in
this paper. Providing demand-based management strategies for these specific trips seems more
relevant.
These results could help PT operators in managing disruption by reinforcing usual PT lines at
major station, and focusing BB strategies on minor stations. The same methodology needs to be
further investigated in order to provide more precise insights on where to send relevant information
about disruptions, especially in remote stops that are outside the studied service area. To go
further, clustering techniques can be used to exploit this methodology and asses a higher number
of disruptions (>2) simultaneously.
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