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SHORT SUMMARY 

Bike-sharing systems (BSS) are being studied for their potential to enhance urban accessibility 

and sustainable mobility. Despite its popularity, effectively managing BSS encounters challenges 

due to demand-supply imbalances. The significance of BSS lies in accurately predicting bike de-

mand at various stations, a task we approach using regression methods such as Random Forest 

(RF), eXtreme Gradient Boosting (XGBoost), Regularized Linear Regression (Ridge), and Least 

Absolute Shrinkage and Selection Operator (LASSO), for short-term predictions. The study uti-

lizes data from Los Angeles on bicycle-sharing and weather conditions, alongside the p-median 

method for station clustering. The results demonstrate that combining both datasets yields accu-

rate predictions at the city level, with an error rate of 0.1%, and at the station level at 18%. Nota-

bly, RF emerges as the most accurate method among the regression models examined. 
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1. INTRODUCTION 

BSS plays a crucial role in improving urban accessibility, fostering diverse transportation options, 

and contributing significantly to sustainable mobility endeavors. Cities worldwide are progres-

sively adopting these shared mobility solutions to confront the expanding challenges associated 

with urban transportation, surging air pollution, and dynamic shifts in mobility behaviors. There 

are three different systems of BSS: station-based, dockless, and hybrid. Each type comes with 

advantages and challenges, impacting user experience and system operations in different ways. 

Station capacities limit bike allocations, but forced rerouting (returning bikes to nearby stations 

when target stations are full) indirectly re-balances station-based systems. On the one hand, this 

advantage is diminished in dockless systems, partially offsetting the flexibility in bike allocation. 

On the other hand, dockless users can save 10%–15% of their trip time with bike access/return 

(Kou and Cai, 2021). 

Nevertheless, the effective administration of bike-sharing resources encounters complexities ow-

ing to the persistent imbalance between demand and available supply. To address these chal-

lenges, two main approaches are employed: demand re-balancing and demand forecasting. De-

mand re-balancing adopts a redistribution strategy to determine the number of bike station and 

their location. This approach can be operator-based, i.e., using vehicle carriers, or user-based, i.e., 

offering incentives for BSS re-balancing (Harikrishnakumar and Nannapaneni, 2023). Bike de-

mand prediction methods fall into city-level, cluster-level, and station-level categories. Models at 
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the city and cluster levels facilitate grouping stations for more effective planning, while the indi-

vidual station-level model faces challenges in anticipating rapid changes in bike demand patterns. 

Bike-sharing is a hot topic in academics, and one key area of interest is predicting bike usage 

using algorithms. Accurate predictions help service providers plan their activities better. Ensem-

ble learning techniques like Random Forest, Gradient Boosting Machines, and Deep Neural Net-

work are emphasized. For example, one research in London worked on the challenge of predicting 

the hourly, daily, and monthly bike-sharing numbers, used machine learning regression tech-

niques. The algorithms employed include RF, Bagging Regressor (BGR), XGBoost, and Ada 

Boosting (AB) regressor. Notably, RF, BGR, and XGBoost demonstrated superior performance 

based on metrics such as R2, MAE, Mean Squared Error (MSE), and Root Mean Squared Log 

Error (RMSLE) (Abdellaoui Alaoui and Koumetio Tekouabou, 2021) . 

Given that bike usage data is typically characterized as time-series data, numerous research en-

deavors employ data mining techniques predicting demand for bike sharing in metropolitan areas.  

Predicting the aggregate demand for all stations becomes notably more straightforward with city-

level forecasting (Wang, 2016) (Giot & Cherrier, 2014). 

In addition, there are several studies work on prediction in station level; however, a limitation of 

these approaches is their inapplicability to free-floating BSS. Wu et al., used three common ma-

chine learning models—RF, Gradient Boosting Regression Tree (GBRT), and Neural Network 

(NN) to accurately predict hourly changes in the number of bikes at the station level. They tested 

two training methods: one predicting check-ins, another predicting check-outs, and also trained 

the model directly with processed bike number change data. The findings indicate that training 

the model on bike number change data is more effective, with the GBRT model outperforming 

the other models (X. Wu et al., 2019). 

The bike-sharing networks display a small-world property, featuring a brief average path length 

and a substantial clustering coefficient. Geographical correlation is observed among clusters of 

stations, influencing the demand prediction model's calculation of trip rates for each cluster. This 

assumes that the demand within a cluster will self-equilibrate, anticipating users to locate an avail-

able bike within the same cluster (Cantelmo et al., 2020). Wu and Kim utilized complex network 

theory and spatial autocorrelation analysis methods to scrutinize the structural properties of bike-

sharing systems. Their research not only quantified the significance of bike stations within the 

network but also evaluated spatial clustering patterns (C. Wu & Kim, 2020). It's essential to note 

that the choice of clustering methods can significantly impact prediction outcomes, adding an 

additional layer of consideration to the analysis. 

Paper Contributions: This paper presents several key contributions, with a primary emphasis on 

the exploration of the bike-sharing dataset through a multilayered approach. Firstly, we initiated 

the process by cleaning the dataset. Subsequent to this, an extensive analysis and preprocessing 

phase were conducted to enhance our understanding of the underlying dynamics. To augment the 

dataset, external weather data were incorporated, with a noteworthy alignment of each bike-shar-

ing station with its nearest weather station. 

Additionally, our methodology involved the application of four distinct machine learning meth-

ods to discern the optimal approach. Specifically, a p-median aggregation approach was employed 

to consolidate a subset of stations. The degree of aggregation directly influenced the consolidation 

of stations into representative stations, with higher aggregation levels resulting in the integration 

of more stations. This systematic approach allowed us to systematically evaluate the performance 

of different machine learning methods and determine which one yielded the most effective out-

comes. 

Paper organization: In Section 2, we delve into the data regarding BSS and weather, outlining 

the methodology and framework for the proposed BSS forecasting. Section 3 provides an in-depth 

discussion of the numerical results obtained from the proposed approach. Lastly, Section 4 offers 

a summary of the conclusions drawn from the study and outlines avenues for future research. 
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2. METHODOLOGY 

In this section, we outline our approach to forecasting the aggregate demand for bike shares, 

commencing with a description of the data employed. We initiate the process by utilizing a station 

clustering method to categorize bike-sharing stations. Following this categorization, machine 

learning algorithms are deployed to predict the quantity of shared bikes. 

Data 

The Bike-sharing dataset employed in this research is derived from the publicly accessible repos-

itory, originating from the Metro Bike Share initiative of the city of Los Angeles 

(Https://Bikeshare.Metro.Net/about/Data/, n.d.). This dataset stands offers an extensive array of 

information. It comprises a diverse range of attributes, such as start and end time, and location of 

trips, duration, and trip categories. 

In Figure 1, there's a histogram showing the distribution of trip durations, and alongside it, there 

are bar charts displaying the distribution of trip categories. The histogram analysis reveals that a 

majority of trips were completed within a time frame of less than 12 minutes, with instances of 

trips exceeding 100 minutes being infrequent. A significant observation is that the majority of 

bike-sharing system users utilized the service for one-way trips, underscoring its convenience and 

practicality in this context. 
  

  

The temporal utilization pattern of share-bikes is represented in Figure 2. The analysis reveals a 

prominent trend wherein bicycle usage experienced a significant increase from 2016 to 2019, 

followed by a decline until 2020 during the Covid-19 restrictions. Subsequently, a recovery in 

usage is observed. When examining the monthly distribution, it becomes evident that the months 

of June and September emerge as the most favored periods for utilizing share bikes, whereas 

December and February experience the lowest levels of usage. Further examination of daily dis-

tributions indicates a prevalent trend of bike usage during weekends. Additionally, an hourly dis-

tribution analysis demonstrates two distinct peaks in usage: during lunchtime (almost 12 o'clock) 

and during the period of returning home from work (almost 17 o'clock). 

 

Figure 1: Number of trips type, Duration of trips [min] 
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Figure 2: Temporal distribution of share-bikes using 

 

Weather data for Los Angeles was sourced from (Https://Www.Visualcrossing.Com/, n.d.). This 

comprehensive dataset incorporates multiple weather stations distributed across the city. To en-

sure accurate weather information for each bike station, we adopted a strategy of associating each 

bike station with its nearest weather station, as depicted in Figure 3Error! Reference source not 

found.. The dataset encompasses a diverse range of weather attributes including temperature, 

humidity, snowfall, visibility, and windspeed. 
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Figure 3: Bike-sharing stations (blue) and weather stations (green) 

 

P-Median 

P-Median is a mathematical optimization problem used in operations research and facility loca-

tion analysis. The goal of the P-Median problem is to determine the optimal placement of a pre-

determined number (denoted as 'P') of facilities within a given geographic area, so as to minimize 

the overall cost or distance between the facilities and the demand points, they serve. Demand 

points are typically represented by a set of locations where customers or clients require services.  

The P-Median method, also can be adapted as a robust clustering tool for demand prediction. The 

method identifies clusters of demand points with shared characteristics. By considering factors 

like transportation costs, it efficiently configures a network to serve these clusters. This adaptation 

is valuable for businesses aiming to predict demand within each identified cluster, providing in-

sights for tailored strategies and enhanced operational efficiency. 

The variable 'P' determines how many representative stations, treated as medians, are included in 

this aggregation approach Its values can span ranging from 1 (city-level) to 235 (station-level), 

permitting a systematic investigation into its impact on the outcomes. Any number between 1 to 

235 will be considered cluster-level. 

 

Regression methods:  

In this investigation, we've incorporated four well-regarded machine learning algorithms known 

for their proven success in handling timeseries tasks. Here's an overview of the algorithms utilized 

in this study: RF (is an ensemble method combining multiple decision trees for time series anal-

ysis capturing complex patterns by averaging or voting among trees), XGBoost (is a sequential 

ensemble learning algorithm effective in forecasting time series, correcting errors of previous 

trees, known for speed and performance.), LASSO (is a regression technique with absolute value-
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based penalty, useful in time series for feature selection and parameter shrinkage, tackling high-

dimensional data), RIDGE (is a linear regression with regularization term penalizing squared co-

efficients, effective in time series to prevent over fitting and enhance stability, especially in multi 

collinear scenarios). 

It is worth mentioning that the performance of the model was assessed using Mean Absolute 

Percentage Error (MAPE) which is calculated as the Mean Absolute Error (MAE) divided by the 

Mean Grand Truth (MGT). MAPE represents the average absolute differences between predicted 

and actual values. We use MGT to rescale errors because it ensures that models are comparable 

on the same scale. Without rescaling, the grand truth for lower P values is significantly higher. 

As a result, comparing MAE when P is one with MAE when P is 235 wouldn't be fair. 

Concluding our methodology, we started creating time series features and conducted an exhaus-

tive evaluation of our predictive models. Central to our analysis were the definition and utilization 

of the modeling parameters, which played a pivotal role in shaping the trajectory of our investi-

gations: 

- Window length: It’s the short-term forecast window length, and can be Δ in 1, 2, 4, and 8 

hours.  

- Level of aggregation P: The number of medians which can range from 1 to 235 (1, 10, 20, 

50, 100, 235). 

- Number of trips: Forecast the average number of trips originated from a median in (t, t + Δ]. 

3. RESULTS AND DISCUSSION 

In this section, we conduct an evaluation and comparison of the ML models utilized in our study. 

Initially, we compare the overall performance of different models configured with their default 

architecture. The violin graph of Figure 4 compares four different ML methods based on MAPE. 

We see RF exhibits a lower average MAPE, which provide more accurate predictions compared 

to the other three methods. This could be due to its ability to capture complex relationships in the 

data, handle noisy features, and effectively generalize patterns. The lower maximum MAPE in-

dicates that RF is more robust and less susceptible to extreme outliers or instances where predic-

tions deviate significantly from the actual values. The combination of lower average MAPE and 

lower maximum MAPE suggests that RF has a strong generalization capability. 
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Figure 4: Comparing the ML methods 

 
 

Figure 5 illustrates how the performance methods is influenced by the level of aggregation P. A 

notable trend is observed: as the number of medians increases, so does the error, which can be 

attributed to the inherent difficulty in predicting medians containing fewer stations. However, a 

compelling finding emerges as RF consistently outperforms the other methods in this context. 

The connection between the level of aggregation and prediction error is evident, indicating that 

as the number of medians increases, prediction tasks become more challenging. This is logically 

expected because predicting medians that cover a smaller number of stations inherently poses 

greater difficulty. The challenge arises from the limited information available for modeling when 

dealing with fewer stations, making accurate predictions more demanding. So, there is a tradeoff 

between the number of P and error in prediction. 

The connection between the aggregation level P and prediction error in BSS has practical impli-

cations for system optimization. Achieving a balance between granularity and minimizing errors 

at this level helps make cost-effective operational decisions. These findings offer valuable insights 

for BSS operators looking to optimize their networks efficiently. 

 



8 

 

 

Figure 5: The effect of the level of aggregation P in the performance of ML methods 

 

Concentrating on the RF model, Figure 6 illustrates variations in median versus MAPE across 

different delta values. Notably, the findings reveal a consistent trend wherein RF exhibits superior 

prediction accuracy when the delta, representing the future window size in hours, is lower. Spe-

cifically, the model demonstrates more accurate predictions when forecasting demand for the next 

hour compared to an 8-hour forecast. This observation holds true across various levels of P values, 

indicating that the model's predictive performance is influenced by the temporal horizon of the 

forecast. 

  

 

Figure 6: Variations in median versus MAPE across different delta values 

Figure 7 compares the model's performance when incorporating weather information against its 

performance without such data, aiming to illuminate the impact on predicting demand. Notably, 
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the exclusion of weather-related information results in a diminished performance of the RF model. 

This decline is particularly pronounced when the aggregation level P is higher. The MAPE esca-

lates to nearly 26% at the station level when weather data is disregarded, compared to 18% a 

markedly lower percentage when weather information is considered.  

 

 

Figure 7: The model's performance by considering against not considering the weather in-
formation (one hour prediction) 

Figure 8 depicted the feature importance analysis of the RF method for predicting one hour ahead 

at the city level. It explains that the demand from the last 2 hour and the preceding 1 hour exerts 

the most significant influence on the prediction. The third position in terms of importance is oc-

cupied by hourly sine seasonality. Additionally, the weather-related features, specifically temper-

ature and humidity, exhibit nearly equal effects on the predictive model. 

 

 

Figure 8: Feature importance analysis for RF method 
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4. CONCLUSIONS 

In conclusion, our study addresses the challenges of demand prediction of BSS by integrating P-

Median clustering and machine learning algorithms for short-term. Using Los Angeles as a case 

study, we applied regression methods such as RF, XGBoost, Ridge, and LASSO. Combining BSS 

and weather data with P-Median clustering yielded acceptable predictions at both station and city 

levels, with RF consistently outperforming other models. Emphasizing the importance of balanc-

ing aggregation (P) in P-Median clustering, we highlighted a tradeoff between medians and pre-

diction error, contributing to improved user experience and cost-effective decisions. Our investi-

gation also underscores the influence of the forecast window size on RF's predictive performance, 

emphasizing the need for tailored forecasting models. This research provides valuable insights 

for system operators, offering a promising approach for short-term demand prediction in BSS, 

bridging academic discourse with practical guidance. Future research directions may explore real-

time data incorporation and further model refinements to address the dynamic nature of demand 

patterns in evolving urban mobility scenarios. 

REFERENCES 

Abdellaoui Alaoui, E. A., & Koumetio Tekouabou, S. C. 2021. Intelligent management of bike 

sharing in smart cities using machine learning and Internet of Things. Sustainable Cities and So-

ciety, 67, 102702. https://doi.org/10.1016/j.scs.2020.102702 

Cantelmo, G., Kucharski, R., & Antoniou, C. 2020. Low-Dimensional Model for Bike-Sharing 

Demand Forecasting that Explicitly Accounts for Weather Data. Transportation Research Rec-

ord, 2674(8), 132–144. https://doi.org/10.1177/0361198120932160 

Giot, R., & Cherrier, R. 2014. Predicting bikeshare system usage up to one day ahead. 2014 IEEE 

Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS), 22–

29. https://doi.org/10.1109/CIVTS.2014.7009473 

Harikrishnakumar, R., & Nannapaneni, S. 2023. Forecasting Bike Sharing Demand Using Quan-

tum Bayesian Network. Expert Systems with Applications, 221, 119749. 

https://doi.org/10.1016/j.eswa.2023.119749 

Https://bikeshare.metro.net/about/data/. (n.d.). 

Https://www.visualcrossing.com/. (n.d.). 

Kou, Z., & Cai, H. 2021. Comparing the performance of different types of bike share systems. 

Transportation Research Part D: Transport and Environment, 94, 102823. 

https://doi.org/10.1016/j.trd.2021.102823 

Wang, W. 2016. Forecasting Bike Rental Demand Using New York Citi Bike Data. https://api.se-

manticscholar.org/CorpusID:167378491 

Wu, C., & Kim, I. 2020. Analyzing the structural properties of bike-sharing networks: Evidence 

from the United States, Canada, and China. Transportation Research Part A: Policy and Practice, 

140, 52–71. https://doi.org/10.1016/j.tra.2020.07.018 

Wu, X., Lyu, C., Wang, Z., & Liu, Z. 2019. Station-Level Hourly Bike Demand Prediction for 

Dynamic Repositioning in Bike Sharing Systems. Smart Innovation, Systems and Technologies. 

https://api.semanticscholar.org/CorpusID:196179464 

Xu, M., Di, Y., Yang, H., Chen, X., & Zhu, Z. 2023. Multi-task supply-demand prediction and 

reliability analysis for docked bike-sharing systems via transformer-encoder-based neural pro-

cesses. Transportation Research Part C: Emerging Technologies, 147, 104015. 

https://doi.org/10.1016/j.trc.2023.104015 

 


