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SHORT SUMMARY

Predicting travel mode choice is a crucial aspect of transportation planning and research. It involves devel-
oping models and methodologies to anticipate the mode of transportation individuals are likely to choose
for a given trip. Both discrete choice models and machine learning techniques are often used to analyze
historical travel behavior data and derive patterns that can be used for prediction. These models help ur-
ban planners and policymakers make informed decisions about transportation infrastructure, public transit
services, and sustainable mobility options. Both discrete choice models and machine learning models have
strengths and weaknesses. In this paper, we present a method that is able to harness the strengths of ad-
vanced gradient boosted decision trees while accounting for the panel structure in the data and estimating
random effects, which - in machine learning studies - are otherwise often ignored. The models are tested on
a travel mode choice case study and show improved predictive performance compared to a plain gradient
boosted decision trees model.
Keywords: activity-based modelling, boosted tree, panel effects

1 INTRODUCTION

Travel mode choice often guides travel policies and decisions in urban planning. Therefore it’s not surpris-
ing that travel mode choice is one of the core elements of travel demand modelling. Discrete choice models
have long dominated the literature being the most suitable technique to model mode choice. Due to the
increasing availability of data and computational power, machine learning models have been increasingly
applied to predict mode choice. The data-driven nature of machine learning models allow for more flexibil-
ity than discrete choice models, resulting in better predictive performance (Zhao et al., 2020). The decision
tree (Breiman et al., 1984), and later the random forest (Breiman, 2001) and boosted trees algorithms (Ke
et al., 2017), are among the most popular machine learning algorithms for predicting mode choice both
because of their interpretability as well as predictive performance (Hagenauer and Helbich, 2017). Even
though predictive performance of machine learning (ML) models are unparalleled by discrete choice mod-
els, ML models still generally fall short when it comes to modelling panel effects in repeated observations
(Kim et al., 2018). Ignoring the presence of panel and/or autoregressive effects may lead to bias in the
estimated effects, and thus predictive outcomes (Sela and Simonoff, 2012). Several efforts have been made
to incorporate random effects into regression trees (Hajjem et al., 2011; Sela and Simonoff, 2012) and later
regression random forests (Hajjem et al., 2014). The proposed algorithms for the random effects regression
trees followed comparative structures, which resemble an expectation-maximization algorithm. In the first
step, a normal regression tree is fit to the dependent variable minus the random effects. Initially the random
effects are assumed to be zero. The nodes of the regression tree are then used as fixed effects in the estima-
tion of a mixed effects model in the second step of the algorithm. These steps are iteratively conducted until
convergence. Variations of this model for binary classification and count outcomes have then been proposed
(Hajjem et al., 2017; Fokkema et al., 2018, 2021). Only few studies, however, have proposed a method to
predict unordered categorical dependent outcomes (Kim et al., 2018), and to our knowledge, there are no
studies that propose an algorithm to estimate random effects while using random forests or boosted trees.
As random forests and boosted trees typically exhibit superior predictive performance compared to decision
trees, incorporating random effects in them is a worthwhile endeavor. In light of the above arguments, this
work proposes a method to predict the choice of transport mode while accounting for panel effects. In the
second section the proposed methodology is highlighted. The results are subsequently discussed in section
three, and conclusions are provided in the final section.
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2 METHODOLOGY

The goal is to predict the main travel mode used by travelers for each trip, considering potential unobserved
systematic behavior manifested in multiple choices of a single respondent, employing gradient boosting
decision trees. In line with common practice, the main mode is defined as the mode that is used for the
trip leg covering the longest distance. If multiple responses exist for the same respondent in longitudinal
data and if not accounted for in the modelling, the assumption of independent measures would be violated.
To account for the pattern that may exist in the behavior of the same individual, the mixed model has been
developed (Equation 1) (Laird and Ware, 1982). Assuming we have a panel of individuals i=1,... I, making
choices at times t=1,... 𝑇𝑖 and were the functional form 𝑓 (𝑥) assumed to be linear, one would arrive at the
commonly used linear mixed model for continuous outcomes, as shown in Equation 2.

y𝑖 = 𝑓 (𝑥𝑖𝑡1, . . . , 𝑥𝑖𝑡 𝑝) + Z𝑖b𝑖 + 𝝐 𝑖 , (1)

y𝑖 = X𝑖𝜷 + Z𝑖b𝑖 + 𝝐 𝑖 ,[
b𝑖
𝝐 𝑖

]
∼ 𝑁

(
0,

[
D 0
0 R𝑖

] )
(2)

where y𝑖 is the 𝑇𝑖 x 1 column vector of continuous responses for the T observations of respondent i, X𝑖 is the
𝑇𝑖 x p matrix of the p fixed effect covariates, 𝜷 is a p x 1 vector of the parameters to be estimated, Z𝑖 is the
𝑇𝑖 x q matrix of random effects covariates, b𝑖 is the q x 1 vector of random effects, 𝜀𝑖 is the 𝑇𝑖 x 1 column
vector of errors and D and R𝑖 are the covariance matrix of the random effects and errors respectively.
Assuming a linear form, however, may be too restrictive since the functional form of the fixed effects is
usually unknown (Sela and Simonoff, 2012). To alleviate this restrictive assumption, various extensions
have been proposed, as discussed in the introduction. One approach involves estimating the fixed effects
through non-parametric decision trees (Fokkema et al., 2018, 2021; Hajjem et al., 2011; Sela and Simonoff,
2012). When the observations y𝑖 and random effects b𝑖 are known, 𝑓 (𝑥𝑖1, ..., 𝑥𝑖 𝑝) can be approximated by
fitting a regression tree to y𝑖 − Z𝑖 b̂𝑖 . Conversely, if the observations y𝑖 and the fixed effects 𝑓 (𝑥𝑖1, ..., 𝑥𝑖 𝑝)
are known, b𝑖 is estimated by fitting a traditional linear mixed model. However, when dealing with an
unordered multinomial categorical outcome, such as mode choice, subtracting Z𝑖 b̂𝑖 from y𝑖 is not feasible.
A specific method (Kim et al., 2018) was proposed to deal with unordered multinomial categorical outcome,
and further tested for mode choice in (Labee et al., In press.). In this work we propose an extension of the
method to enable leveraging the strengths of boosted trees, while accounting for repeated choices nested
across individuals. A gradient boosting decision trees model (GBDT) is initially fitted to multinomial
outcome 𝑦𝑖𝑡 taking values 1,... J, assuming the random effects are known. In previously proposed methods
where a decision tree was used in the initial step, the leaves of the trees would be used as the fixed effects
in the next step. Due to the large number of trees in random forests or boosting algorithms, this would be
highly impractical. Instead, after the boosted trees model is fitted to the training data, the shapley values
are extracted (Lundberg and Lee, 2017). These shapley values are then used as the input features for a
k-means clustering model (MacQueen, 1967). The resulting clusters then form the fixed effects 𝑓 𝑗 (X𝑖)
. The determined fixed effects can be employed in the subsequent phase to calculate the random effects,
wherein different levels can be identified, as shown in Figure 1. A Bayesian regression model is applied
to Equation 3, incorporating non-informative prior distributions. The fixed effects are assigned a prior
normal distribution, while half Cauchy priors are employed for the random effects. Given the multinomial
nature of the dependent variable, the baseline-category logit model (Agresti, 2002) is chosen as the suitable
link function for the Generalized Linear Mixed Model (GLMM). Then the logits 𝜂𝑖 𝑗 of each of the 𝐽 − 1
categories over the reference category, can be written as Equation 3.

𝜼𝑖 𝑗 = log
𝝅ij

𝝅iJ
= 𝑓 𝑗 (X𝑖) + Z𝑖b𝑖 𝑗 , 𝑗 = 1, ..., 𝐽 − 1 (3)

where 𝜋𝑖 𝑗 are the response probabilities for the non-baseline categories ( 𝑗 ≠ 𝐽), and 𝜋𝑖𝐽 the response prob-
ability for the baseline-category. The response probabilities without random effects can then be extracted
as

𝜋𝑀𝐶𝑀𝐶
𝑖 𝑗𝑡 =

exp(𝜂𝑖 𝑗𝑡 − 𝑧𝑖 𝑗𝑡 b̂𝑖 𝑗 )
1 +∑𝐽−1

𝑗′=1 exp(𝜂𝑖 𝑗′𝑡 − 𝑧𝑖 𝑗′𝑡 b̂𝑖 𝑗 )
, 𝑗 = 1, ..., 𝐽 − 1 (4)

𝜋𝑀𝐶𝑀𝐶
𝑖 𝑗𝑡 =

1
1 +∑𝐽−1

𝑗′=1 exp(𝜂𝑖 𝑗′𝑡 − 𝑧𝑖 𝑗′𝑡 b̂𝑖 𝑗 )
, 𝑗 = 𝐽. (5)
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The response can be subsequently updated using the Monte Carlo technique from the probabilities 𝜋𝑀𝐶𝑀𝐶
𝑖 𝑗𝑡

.
A thorough gridsearch was conducted to find the most suitable parameters to grow the gradient boosted
trees. To have a decent effective sample size after the MCMC sampling, we have simulated four chains for
2,000 iterations with a warmup of 1,000 iterations. Thus, we ended up with 4*(2,000-1,000) post-warmup
draws. All analyses have been conducted using R (R Core Team, 2022), using the LightGBM and BRMS
packages (Shi et al., 2023; Bürkner, 2017).

Algorithm 1: Random effect gradient boosted tree estimation procedure
Input:
𝑦- vector with responses 𝑦𝑖 𝑗
𝑐𝑜𝑣- data frame with all covariates
𝑔𝑟- vector of the grouping variable for each observation
𝑧𝑛𝑎𝑚- vector with names of covariates to be used as random effects
𝑥𝑛𝑎𝑚- vector with names of covariates to be used as fixed effects
𝑡𝑜𝑙- threshold of convergence
𝑖𝑡𝑚𝑎𝑥- maximum number of iterations

1 Set the estimated random effects b̂𝑖 𝑗 = 0 and set the number of iterations n = 0
2 while n < itmax and not converged do
3 Fit Gradient Boosting Decision Trees to 𝑦𝑖𝑡 if n = 0, otherwise to 𝑦∗

𝑖𝑡

4 Extract the shapley values
5 Cluster observations using K-means algorithm
6 Set n = n+1, and set clusters from previous step to 𝑓 𝑗(X𝑖)
7 Fit 𝜂𝑖 𝑗 = 𝑓 𝑗 (X𝑖) + Z𝑖b𝑖 𝑗 using Markov-Chain Monte-Carlo GLMM
8 Extract b̂𝑖 𝑗 from the estimated MCMC GLMM
9 Update a response from the probabilities �̂�𝑀𝐶𝑀𝐶

𝑖 𝑗𝑡
, and set it to 𝑦∗

𝑖𝑡

10 if ΔWAIC < tol then
11 converged← true
12 else
13 converged← false
14 end
15 end

Output: The final fitted MCMC GLMM
The final fitted GBDT
b, the final estimation of the random coefficients
n, the number of iterations
WAIC, the model fit of the mixed model

The proposed algorithm is shown in algorithm 1. Tested parameters and their optional values are shown in
Table 1. Using the same set of parameters for the boosted trees model, we specify four different random
intercept models. Two two-level models with a random intercept for each individual - one with 100 clusters
and one with 200 clusters (model 1 and 3 respectively). These models are then compared to the plain
boosted trees model and two three-level models, model 2 and 4 respectively, (also with 100 and 200 clusters
respectively), where a random intercept for ‘travel-day’ within each individual is also considered. Travel-
day represents an indicator for one of the three recorded travel-days by the individual, on which the trip was
conducted.
The estimation utilizes data from the Netherlands Mobility Panel (MPN) travel survey (Hoogendoorn-
Lanser et al., 2015). This dataset encompasses details at household, individual, and trip levels, with each
respondent maintaining a travel diary for three consecutive days annually. A descriptive summary is shown
in Table 2. Built environment characteristics were also included as part of the conditional variables. The
incorporation of built environment features is motivated by prior research (Cervero, 2002; Cervero and
Kockelman, 1997; Cheng et al., 2019; Ewing and Cervero, 2010; Kim et al., 2021), suggesting their im-
pacts on the mode choice decision of travelers. This study includes factors such as distances to public
transportation (PT) services such as train stations, bus, metro, and tram stops, and the city center. Land
use mix of the respondent’s home postal code zone is also considered, calculated as Σ𝑚 (𝑃𝑚𝑙𝑛(𝑃𝑚)/𝑙𝑛(𝑘))
where 𝑃𝑚 is the proportion of the 𝑚-th land use category (Song et al., 2013) and 𝑘 is the number of land
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Mode choice in 

panel data

Individual 1 Individual ...

Day 11

Trip 111 Trip T11Trip ...11

...... ...

... ......

Individual i

Day D1

Trip 1D1 Trip TD1Trip ...D1

Day 1i

Trip 11i Trip T1iTrip ...1i

Day Di

Trip 1Di Trip TDiTrip ...Di

Figure 1: Hierarchy in the panel data

Table 1: Grid search parameters
Maximum depth 6, 8, 10, 20
Learning rate 0.01,0.05,0.1
Number of leaves 30, 40, 50
Minimum number of observations per leaf 10, 20, 50
Number of boosting iterations 1000
Use ’extraTrees’ algorithm Yes, no
Rounds for early stopping 50
Fraction of features used per tree 0.6, 0.8, 1.0
Fraction used for bagging 0.6, 0.8, 1.0
Bagging frequency 1, 5

use types *. Additionally, weather data, known to impact mode choice (Böcker et al., 2013, 2016; Hyland
et al., 2018; Kim, 2020; Liu et al., 2015, 2017), are incorporated. The variables include daily mean wind
speed, daily mean temperature, precipitation duration, daily precipitation amount, and the maximum hourly
precipitation amount, collected from 29 weather stations in the Netherlands and geographically matched
with the trip’s origin. These variables only served as conditional variables, and no covariates were added.
A stratified split is used to split the data into a training (80%) and testing data set (20%).

Table 2: Descriptive summary of the data
Time span 2018
Number of respondents 3,443
Number of (main) trips 33,443
Total number of trips per individual across all
three days

Minimum = 1, first quartile = 6, median
= 9, third quartile = 12, maximum = 42

Bicycle 20.8%
Bus Tram Metro (BTM) 1.9%
Car as driver (CaD) 39.4%
Car as passenger (CaP) 9.5%
E-bike 6.4%
Train 2.7%
Walking 19.3%

3 RESULTS AND DISCUSSION

In order to speed up the model estimation, the algorithm here is limited to one iteration. Figure 2 displays
trace and density plots for the random effects (the random intercept at individual level) for model 4 (three-
level model with 200 clusters), allowing us to assess the proper mixing of Markov chains during model
estimation. The various plots indicate effective mixing of the chains: the aligned density plots and the
distinctive ’hairy caterpillar’ pattern in the trace plots on the right-hand side demonstrate this phenomenon
(Lee and Wagenmakers, 2013). Table 3 shows the estimated random effects for the four models. Elevated
standard deviation values across all models suggest a significant amount of variability in mode choice for

*included land use types: education, offices, stores, meeting (such as restaurants and bars), lodging and residential
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individuals’ main trips. This underscores the importance of considering the nested nature of choices within
individuals. The estimates for the random effects in model 1 are very similar to those in model 3, and
therefor the increase in clusters in the k-means clustering step does not seem to affect those estimates.
The same holds for models 2 and 4. In Table 4 we compare the predictive out of sample performance
of the mixed effects models, conditionally on the estimated random effects and evaluate them against the
predictive performance of the plain boosted trees model. Due to the class imbalance in the target variable,
we used balanced accuracy (Equation 6), F1 score (Equation 7) and Cohen’s Kappa (Equation 10), where
the latter controls for the expected (random) accuracy.

σ̂ind ividual :walk ing

σ̂ind ividual :Train

σ̂ind ividual :e−bike

σ̂ind ividual :CaP

σ̂ind ividual :CaD
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Figure 2: Trace and density plot random effects (individual level) (bicycle is reference category)-
model 4

balanced accuracy =

𝑇𝑃
†

𝑇𝑃+𝐹𝑁
+ 𝑇𝑁

𝑇𝑁+𝐹𝑃

2
(6)

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (7)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (8)

†TP=True Positive, TN = True Negative, FP = False Positive and FN = False Negative

5



Table 3: Random effects estimates (reference category is bicycle)
BTM CaD CaP e-bike Train Walking

Model 1 100 clusters
Mean 0.745 0.448 0.557 0.681 0.778 0.447

𝜎𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 4.263 2.903 3.541 3.930 4.169 2.717
Sd c.i. 3.759-4.813 2.748-3.060 3.292-3.817 3.586-4.302 3.710-4.702 2.553-2.983

Sd error 0.272 0.079 0.133 0.181 0.257 0.086
Model 2 100 clusters

Mean 0.981 0.672 0.781 0.901 0.893 0.597
𝜎𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 5.112 3.868 4.120 4.960 4.487 3.173

Sd c.i. 4.408-5.900 3.623-4.128 3.728-4.530 4.459-5.508 3.910-5.123 2.932-3.442
Sd error 0.394 0.131 0.205 0.268 0.311 0.131

Mean 0.702 0.620 0.713 0.556 0.316 0.534
𝜎𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙:𝑑𝑎𝑦 2.886 2.826 3.075 2.291 1.172 2.313

Sd c.i. 2.206-3.590 2.629-3.039 2.714-3.456 1.877-2.703 0.121-2.054 2.075-2.542
Sd error 0.353 0.105 0.194 0.210 0.498 0.101
Model 3 200 clusters

Mean 0.774 0.451 0.545 0.676 0.745 0.455
𝜎𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 4.330 2.882 3.400 3.833 3.838 2.743

Sd c.i. 3.798-4.888 2.734-3.037 3.157-3.660 3.505-4.188 3.370-4.344 2.569-2.921
Sd error 0.281 0.080 0.129 0.174 0.247 0.091
Model 4 200 clusters

Mean 1.014 0.659 0.721 0.873 0.783 0.598
𝜎𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 5.169 3.771 3.745 4.710 3.802 3.167

Sd c.i. 4.390-6.039 3.528-4.021 3.396-4.122 4.248-5.217 3.277-4.355 2.930-3.425
Sd error 0.418 0.125 0.187 0.248 0.281 0.128

Mean 0.763 0.620 0.666 0.551 0.172 0.538
𝜎𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙:𝑑𝑎𝑦 3.146 2.826 2.875 2.271 0.576 2.327

Sd c.i. 2.417-3.940 2.616-3.039 2.527-3.219 1.877-2.676 0.022-1.395 2.100-2.562
Sd error 0.380 0.106 0.177 0.204 0.383 0.119

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (9)

𝐾𝑎𝑝𝑝𝑎 =
observed accuracy − expected accuracy

1 − expected accuracy
(10)

The results indicate that accounting for the random effects results in significantly better overall predictive
performance when compared to the boosted trees only model. The most complex models, the three-level
models (models 2 and 4), show the best performance, both on the overall level, as well as for most transport
modes. Using 𝑘 = 200 (model 4) in the k-means algorithm, slightly increases performance compared
to 𝑘 = 100 (model 2). When we compare the performance for the separate modes for model 1 and 3
however, the mixed effects models do not always outperform the plain boosted trees model. Both balanced
accuracy and the F1-score for bicycle are lower for mixed effect models for both model 1 and 3 compared
to boosted trees only model, and for model 3 the F1-score for BTM is significantly lower for the mixed
model compared to the boosted trees only score. Regarding Cohen’s Kappa, all models fit the data very
well. According to the classification by Landis and Koch (1977), values ranging from 0.61 to 0.80 are
deemed substantial. Additionally, alternative perspectives categorize Kappa values between 0.40 and 0.75
as fair to good, and those exceeding 0.75 as excellent (Fleiss, 1981). Based on the commonly used Bayesian
information criteration WAIC (Widely Applicable Information Criterion) (Vehtari et al., 2017; Watanabe,
2010), model 4 has the best fit. This would suggest that increasing the number of clusters in the k-means
clustering step in the proposed algorithm, can lead to better model fits. Table 5 shows the results from
previous work (Labee et al., In press.), where a similar algorithm was applied to estimate panel effects in
decision trees using the CHAID tree algorithm. The algorithm in the cited work was slightly different, in
the sense that after the fitting of the decision tree, indicators for the leaf nodes were used as fixed effects,
rather than an indicator for the k-clusters as proposed in this work. Moreover, in Labee et al. (In press.)
PT was still the merged choice of BTM & Train. The first model, CHAID 1, shows the best performance,
both for the CHAID tree only as well as the mixed effects model. In this case, a two-level model was used
to account for panel effects in each individual. Even though we can see a jump in performance once we
account for the panel effects, the current algorithm proposed in this work using the boosted trees, shows a
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significantly larger jump, also compared to the CHAID mixed effects models.

Table 4: Predictive performance
Model Mode Boosted trees only Mixed effects model

Bal. acc. F1-score Kappa Overall acc. Bal. acc. F1-score Kappa Overall acc. WAIC

1

0.732 0.802 0.739 0.806 28,444.9
Bicycle 0.862 0.783 0.849 0.768
BTM 0.749 0.609 0.771 0.608
CaD 0.867 0.836 0.880 0.852
CaP 0.823 0.703 0.832 0.707
e-bike 0.823 0.727 0.833 0.725
Train 0.847 0.741 0.865 0.787
Walking 0.903 0.842 0.907 0.843

2

0.806 0.855 21,433.4
Bicycle 0.892 0.835
BTM 0.803 0.667
CaD 0.915 0.895
CaP See model 1 0.877 0.795
e-bike 0.876 0.798
Train 0.868 0.790
Walking 0.927 0.868

3

0.743 0.809 27,885.2
Bicycle 0.857 0.780
BTM 0.727 0.523
CaD 0.879 0.851
CaP See model 1 0.844 0.729
e-bike 0.828 0.716
Train 0.856 0.773
Walking 0.909 0.846

4

0.809 0.858 21,039.1
Bicycle 0.899 0.844
BTM 0.787 0.635
CaD 0.915 0.895
CaP See model 1 0.884 0.802
e-bike 0.865 0.789
Train 0.862 0.778
Walking 0.927 0.876

4 CONCLUSIONS AND FURTHER WORK

The primary objective of this study is to broaden the range of choices considered in travel mode choice,
representing a crucial step toward extending the modelling of mode choice to each individual trip leg, and
as such, multi-modal trips. In pursuit of this objective, we introduce a novel method designed to estimate
random effects, while harnessing the predictive power of the boosted trees algorithm. We test this method
to predict the travel mode for the main trip. Our analysis incorporates an expanded choice set encompassing
seven distinct modes: bus/tram/metro, bicycle, car as a driver, car as a passenger, e-bike, train, and walking.
This broader selection contrasts with the conventional inclusion of four to five modes in similar studies. The
proposed algorithm, employing a single iteration, is tested through four distinct model specifications. These
specifications are then benchmarked against a plain boosted trees model and CHAID decision tree. All of
the proposed models outperform the plain boosted trees model, however, the proposed three-level models
(model 2 and 4) show the best performance. It is noteworthy that Model 4 (the three-level model with 200
clusters) exhibits the best fit with the data based on the WAIC values. The estimates of parameters and
the predictive performance metrics collectively emphasize the critical importance of accounting for random
effects nested within different respondents when considering mode choice. This underscores the influence
of individual-specific factors on the main trip mode choice. While the work addresses the main objective,
the presented study is not without limitations. Future work should explore and compare alternative train/test
partition strategies where an individual with its observations, either only occurs in the training data, or only
in the testing data. Little knowledge is available both within the travel behavior community, as well as the
general sense, on the possible ‘data leakage’ issue occurring when a conventional stratified split is used.
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Table 5: Predictive performance CHAID tree
Model Mode CHAID tree only Mixed effects model

Bal. acc. F1-score Kappa Overall acc. Bal. acc. F1-score Kappa Overall acc. WAIC

CHAID 1𝑎

0.656 0.746 0.713 0.785 24,958.8
Bicycle 0.809 0.702 0.816 0.726
CaD 0.831 0.794 0.871 0.844
CaP 0.777 0.618 0.842 0.709
e-bike 0.783 0.609 0.852 0.704
PT 0.772 0.634 0.851 0.658
Walking 0.887 0.816 0.890 0.821

CHAID 2𝑏

0.502 0.639 0.673 0.755 28,897.3
Bicycle 0.684 0.510 0.805 0.695
CaD 0.769 0.726 0.844 0.811
CaP 0.695 0.494 0.832 0.699
e-bike 0.648 0.384 0.816 0.652
PT 0.655 0.444 0.828 0.657
Walking 0.853 0.723 0.872 0.793

CHAID 3𝑐

0.493 0.634 0.659 0.745 29,179.3
Bicycle 0.679 0.502 0.800 0.683
CaD 0.761 0.718 0.838 0.811
CaP 0.699 0.500 0.817 0.699
e-bike 0.653 0.394 0.816 0.652
PT 0.644 0.412 0.823 0.657
Walking 0.847 0.721 0.863 0.793

CHAID 4𝑑

0.456 0.611 0.665 0.749 29,413.3
Bicycle 0.696 0.518 0.797 0.683
CaD 0.746 0.701 0.839 0.805
CaP 0.664 0.436 0.833 0.696
e-bike 0.521 0.084 0.810 0.637
PT 0.613 0.351 0.816 0.635
Walking 0.835 0.708 0.874 0.794

𝑎 level of significance merging: 0.05, level of significance splitting: 0.05, min. split: 20, min. node size: 7, max.
height: infinite, its: 1
𝑏 level of significance merging: 0.05, level of significance splitting: 0.05, min. split: 100, min. node size: 50, max.
height: 6, its: 1
𝑐 level of significance merging: 0.05, level of significance splitting: 0.01, min. split: 200, min. node size: 100, max.
height: 6, its: 1
𝑑 level of significance merging: 0.05, level of significance splitting: 0.01, min. split: 200, min. node size: 100, max.
height: 6, its: 100
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