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Abstract

This research focuses on electrifying an existing bus network under energy consumption uncer-
tainty between stops, with limited data. The study evaluates the optimal locations and types
of charging stations, as well as battery sizes, to minimize electrification costs. Three optimiza-
tion models are explored: nominal (deterministic model considering expected values for energy
consumption), robust optimization with uncertainty budget (BoU), and distributionally robust
chance constraint (DRCC), which utilizes observed energy consumption data. Regarding the op-
timal design, the BoU model opts for more flash-feeding stations to handle greater uncertainties,
while DRCC tends to minimize the number of charging stations overall. The performance of the
models are compared based on their electrification costs as well as conceived battery longevity in
terms of charge-discharge cycle, finding that larger battery capacities in robust models (BoU and
DRCC) extend battery life compared to the nominal model. Compared to BoU model, the DRCC
achieves comparable improvements in battery life at a lower cost (for similar battery capacity).
For the observed energy consumption in this study, nearly 40 data points are found to be sufficient
for robust network design which is feasible for 90% of observed energy consumption data. In con-
clusion, the DRCC model is particularly efficient in designing robust and less conservative network
design.
Keywords: Electric bus network, Robust optimization, Distributionally robust chance constraint
model, Data-driven models

1 Introduction

The rapid shift towards eco-friendly urban transportation has made utilization of Battery-powered
Electric Buses (BEBs) popular (Azadeh et al., 2022). BEBs, however, deal with range limitations
due to battery capacity constraints and they are affected by estimated energy consumption. De-
spite technological improvements, realized energy usage and range often deviate from theoretical
models (Zhou et al., 2023), influenced by variables like weather, driving styles, and passenger loads
(demand). Accurate estimation of energy consumption for BEBs between stops is vital to design
an efficient BEB network. Failure to reach the next stop due to unforeseen energy usage not only
interrupts service but also incurs additional costs for relocating the bus to a charging station,
adding to the system’s costs. As suggested in the literature simulation models, can estimate the
energy consumption data (Scarinci et al., 2019; Rios et al., 2014). Their reliance on specific as-
sumptions, can limit their real-world applicability. Hence, collecting real energy consumption data
through field experiments can be an alternative which is costly and generates limited data. In this
way, utilization of stochastic programming is impractical, since many scenarios are required to be
generated to capture the true distribution of energy consumption. Some studies do not explicitly
consider energy consumption patterns in the network design e.g., Kunith et al. (2017); Yıldırım
& Yıldız (2021). Research on various robust optimization models, to capture energy consumption
pattern, such as Bai et al. (2022); Liu et al. (2018), offers insights into robust network design.
However, these models only consider the expected and maximum deviations of observations, ne-
glecting that the probability of occurrence of extreme values might be very low. This can lead to
overly conservative outcomes, especially when these extreme values are significantly different from
other observations (such as skewed distributions).
This study, therefore, poses a critical question: How can we design a robust BEB network with the
aim of minimizing the total electrification costs, encompassing charging station locations and types
and battery capacities, using limited data that better reflects real-world situations? Furthermore,
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what are the differences of such approach with traditional robust optimization methods (in terms
of electrification cost and battery longevity)?
This study utilizes data-driven robust methods, specifically Distributionally Robust Chance Con-
straint (DRCC), as a way to integrate the limited data to the network design. This approach has
been applied successfully in diverse fields, including network design optimization for renewable en-
ergy generation systems (Alismail et al., 2017), and photovoltaic systems and distribution network
management (Zhang et al., 2023). This study applies DRCC to BEB network design, representing
one of its first uses in this field.
The paper is structured to discuss three models: a nominal model for baseline comparison, a ro-
bust budget of uncertainty model, and the DRCC model. The results section compares models
performances and assesses the impact of observational data quantity on the economic feasibility
and robustness of BEB network design, concluding with a summary of findings.

2 Methodology

This section outlines the challenge of electrifying an existing bus network and introduces our
optimization model. We address the problem of facility location in a network with several bus
lines, each with a predefined number of trips and schedules. If the network has shared stop
between several lines, we assume their time-table is not conflicting. Our model simultaneously
determines three key aspects to minimize total electrification costs: the types and locations of
charging stations and the capacity of onboard batteries.
In our approach, BEBs are charged en route at bus stops. There are two types of charging stations:
Flash-feeding (FF) and standard. BEBs are fully charged at FF stations, while the charge at
standard stations depends on the bus’s dwell time and the charging station’s power.
We base our model on three assumptions: 1- Each bus line follows a fixed route with a terminal
for starting and ending trips. 2- BEBs are fully recharged at the terminal after each service loop.
3- FF and standard charging stations are installed at existing bus stops.
The primary goal of this study is to develop a robust network design for electrifying a bus network,
taking into account the uncertainty in energy consumption. We focus on how observations influence
the design of such a robust network.

Nominal modeling formulation

Let K and S be the set of bus lines and bus stops, respectively. The set T denotes all possible
charging station types. Here, we present the nominal model, with considering the expected values
for BEB energy consumption between stops.

min
∑
i∈S

∑
t∈T

αi,t xit +
∑
k∈K

βγk zk (1)

subject to:∑
t∈T

xit ≤ 1 ∀i ∈ S (2)

zk ≥ 0 ∀k ∈ K (3)

eleavingki = bupper zk ∀k ∈ K, i = ok (4)

eleavingki ≤ bupper zk ∀k ∈ K, i ∈ Sk (5)

eleavingki ≤ eleavingki−1 − µk,i−1,i +
∑
t∈T

Pt ∆ki xit ∀k ∈ K, i ∈ Sk (6)

eleavingki−1 − µk,i−1,i ≥ blower zk ∀k ∈ K, i ∈ Sk (7)

xit ∈ {0, 1} ∀i ∈ S, t ∈ T (8)

The objective function (1) seeks to minimize total costs, combining the costs of installing charging
stations (αit) and batteries for each bus line (β). Parameter γk shows the number of buses servicing
each line, where xit is a binary variable indicating the installation of a charging station of type t
at stop i, and zk represents the battery capacity for line k. The constraints include:

• Constraint (2) limits each bus stop to one charging station type.

• Constraint (3) ensuring battery capacities are non-negative.
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• Battery level constraints (blower, bupper) to control battery aging, with eleavingk,i showing the
remaining power for a BEB leaving stop i. Constraint (4) ensures full charging at the
terminal (i = ok), and (5) sets the maximum battery level at non-terminal stops.

• Constraint (6) addresses the battery level changes considering energy consumption and
charging at stops. For standard charging stations, power depends on charging station ca-
pacity Pt and dwell time ∆ki, while FF stations always fully charge the BEBs (i.e ∆ki = 1).

• Constraint (7) ensures sufficient battery to reach the next stop, and (8) defines the decision
variables’ domain.

To better align with real-world situation, we will tackle the energy consumption uncertainty in the
forthcoming section of our optimization model.

Robust optimization models

To adapt the model for robust optimization, we eliminate the state variables (i.e. eleavingki ) since
they rely on the realization of uncertainties. Network design decisions must be made prior to
actual uncertainty realization, thus requiring "here and now" decisions that are not subject to
adjustment. Let µ̃k,i−1,i represent uncertain energy consumption between two successive stops.
Since we assume BEB leave terminal fully charged, we can substitute eleavingki in accumulative
manner using constraints (4) and (6):

eleavingkn = bupper zk −
n∑

i=m

µ̃k,i−1,i +
∑
t∈T

n∑
i=m

Pt∆kixit ∀k ∈ K, 1 ≤ n ≤ |Sk|

Then, combining them to constraints (5) and (7) yields:

∑
t∈T

n∑
i=m

Pt∆kixit ≤
n∑

i=m

µ̃k,i−1,i, ∀k ∈ K, 1 ≤ m ≤ n ≤ |Sk| (9)

bupper zk −
n∑

i=m

µ̃k,i−1,i +
∑
t∈T

n−1∑
i=m

Pt∆kixit ≥ blower zk ∀k ∈ K, 1 ≤ m ≤ n ≤ |Sk| (10)

Budget of uncertainty model (BoU)

Our first modeling approach is the robust Budget of Uncertainty optimization model (BoU), which
uses expected and maximum deviation data points between stops to find an optimal robust solution.
We create a simple uncertainty set for BEB energy consumption, defined by the mean (µ̄k,i−1,i) and
maximum deviation (µ̂k,i−1,i) from expected consumption between stops. We assume uncertain
energy consumption lies within a symmetric and bounded interval, but only consider positive
deviations, ignoring potential negative ones as they don’t adversely affect the bus system. This
results in an uncertainty box where µ̃k,i−1,i ∈ [µ̄k,i−1,i, µ̄k,i−1,i + µ̂k,i−1,i].
We standardize the random variable µ̃k,i−1,i with φk,i−1,i for better interpretation. To avoid overly
conservative outcomes, we define an uncertainty set C(φ̃) with a budget constraint Γkmn, limiting
energy consumption deviation along bus line k between stations m and n, which belongs to the
interval [0, n − m + 1] (Bai et al., 2022). The dual form of our optimization model minimizes
Γkmnu

kmn +
∑n

i=m vki subject to constraints ensuring the robustness against maximum energy
consumption deviations. Consequently, Constraints (9) and (10) is reformulated as follows:

∑
t∈T

n∑
i=m

Pt∆kixit ≤
n∑

i=m

µ̄k,i−1,i + Γkmnu
kmn +

n∑
i=m

vki ,

∀k ∈ K, 1 ≤ m ≤ n ≤ |Sk| (11)∑
b∈B

(bupper − blower) zk +
∑
t∈T

n−1∑
i=m

Pt∆kixit ≥
n∑

i=m

µ̄k,i−1,i + Γkmnu
kmn +

n∑
i=m

vki

∀k ∈ K, 1 ≤ m ≤ n ≤ |Sk| (12)

ukmn + vki ≥ µ̂k,i−1,i, ∀k ∈ K,m ≤ i ≤ n (13)

ukmn, vki ≥ 0, ∀m ≤ i ≤ n (14)
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The complete BoU robust optimization counterpart model is (15):

Objective function: Equation(1) (15)
subject to: (2), (3), (8), (11)− (14)

Although a budget is set to limit the focus on extreme deviations in energy consumption, the
BoU model’s sensitivity to the estimation of the worst-case scenario is notable. In other words,
BoU overlook the probability of occurrence of the worst-case value. A significantly higher worst-
case deviation at one stop, with small probability of occurrence, can unduly influence the design
of the entire network. Consequently, in the subsequent section, we explore alternative modeling
approaches that incorporate a broader range of observed data for system design.

Distributionally robust chance constraint model (DRCC)

To tackle the shortcomings of BoU and reduce the impact of an alienated worst-case scenario on
total system’s cost, we introduced a tailored DRCC model to develop a robust design for the net-
work. The DRCC approach enables us to modify the optimization model according to the number
of data points, achieving a solution that is both robust and less conservative. The logic behind
DRCC is shifting from solely focusing on maximum deviation to adjusting observed data points
towards the worst possible distribution for the energy consumption based on a distributional dis-
tance (i.e. Wasserstein distance) budget. This budget is shown by parameter θ ∈ [0,∞) which is
the radius of the Wasserstein ball, representing the confidence level or the degree of risk aversion
(Chen et al., 2022; Gao & Kleywegt, 2023).
Two main definition in DRCC are ambiguity set and safety set. F(θ) is a Wasserstein ambiguity set
that contains all the plausible probability distributions for the uncertain observation. The worst
possible distribution is opted from this set. Safety set S(x) represents the feasible region based on
decision variables. The DRCC model ensures that constraints are met for all probability distribu-
tions within the ambiguity set F , with a probability of at least (1− ϵ), where ϵ is a predefined risk
tolerance level (for chance constraint). Scenario is defined as the energy consumption observation
between stops on a bus line, it is indicated by j where N shows the total number of observations.
The DRCC model focuses on ensuring that the probability of the uncertain vector for each scenario
j (i.e. µ̃j

k,i−1,i) exceeding the decision-dependent safety set S(x) is below ϵ for every distribution
in the ambiguity set F(θ).
In our model, we face the DRCC with joint right-hand side uncertainty. Adapting mixed-integer
problem (Chen et al., 2022) to our specific problem, where the energy consumption is calculated
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in a cumulative way, has led to the development of the following model:

min
y,r,q,d,x,z

∑
k∈K

β γk zk +
∑
i∈S

∑
t∈T

αt xit (16)

subject to:∑
t∈T

xit ≤ 1 ∀i ∈ S (17)

ϵNqk −
n∑

i=m

∑
j∈[N ]

(rki )
j ≥ θN ∀k ∈ K,m < n ≤ |Sk|

(18)

M(1−
n∑

i=m

(yki )
j) ≥ qk −

n∑
i=m

(rki )
j ∀j ∈ [N ], k ∈ K,m < n ≤ |Sk|

(19)
n∑

i=m

(dki )
j +M

n∑
i=m

(yki )
j ≥ qk −

n∑
i=m

(rki )
j ∀j ∈ [N ], k ∈ K,m < n ≤ |Sk|

(20)∑
t∈T

n∑
i=m

Pt∆ki xit −
n∑

i=m

(dki )
j ≤

n∑
i=m

µ̃j
k,i−1,i ∀j ∈ [N ], k ∈ K,m < n ≤ |Sk|

(21)

(bupper − blower)zk +
∑
t∈T

n−1∑
i=m

Pt∆ki xit −
n∑

i=m

(dki )
j ≥

n∑
i=m

µ̃j
k,i−1,i ∀j ∈ [N ], k ∈ K,m < n ≤ |Sk|

(22)

(yki )
j , xit ∈ {0, 1}; (rki )

j , qk, zk ≥ 0 (23)

In obtaining mixed-integer programming formulation model, we introduce binary variables to the
model. (yki )

j is a binary variable where (yki )
j = 1 (respectively (yki )

j = 0) corresponds to the
situation when sample µ̃j

k,i−1,i does not (does) satisfy the chance constraint. Variables r, q and d
are the dual variables, and M is a sufficiently large (but finite) number.

3 Results and discussion

In this section, we apply the proposed three models on an existing bus network consists of two bus
lines as shown in figure (1).These lines share three stops and feature circular routes, as indicated by
the same stops for departures and arrivals. The corresponding expected energy consumption and
maximum deviations for bus lines are shown in figure (2). Each line is serviced by 10 buses. The
parameters values are shown in table 1. To develop the DRCC model, we generated 100 scenarios
using a uniform distribution ranging from [0.8µ̄, µ̂] for every stop along each bus line. Gurobi
Optimizer version 9.5.2 is used to solve the problem optimally. In the following subsections, we
will evaluate the performance of three models, focusing on their immediate costs and projected
battery lifespan, along with analyzing the impact of number data points on the DRCC model.

Table 1: Parameters of the models

Parameters Value
T 2 (charging types: S and FF)
αS 120,000 e
αFF 400,000 e
β 1200 e

blower; bupper 20%; 80%
∆ Normal distribution(mean=20 seconds, std. 4 seconds)
M 25 (for DRCC model)
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Figure 1: Existing bus network model with terminal charging station

(a) Bus line 1 (b) Bus line 2

Figure 2: Expected and maximum deviation for energy consumption in the studied bus
network

Models performance

The outcomes of the three models are presented in table (2). At a zero risk aversion level, the
robust models default to the expected energy consumption, mirroring the results of the nominal
model. The ’Relative change’ columns in (2) highlight the deviations of each model’s optimal
results from those of the nominal model. An increase in the risk aversion parameter in both robust
models correlates with elevated electrification costs and greater battery capacities, as a precaution
against extreme energy consumption uncertainties.
In the BoU model with Γ = 0.1, the network design remains unchanged, suggesting that the
nominal design can accommodate some uncertainty by simply augmenting battery capacities. For
higher Γ values, a more cautious network design is adopted, characterized by a greater number
of FF charging stations and fewer standard ones. Conversely, the DRCC model tends to result
in fewer charging stations of both types. The DRCC model’s results at θ = 0.6 and θ = 1 imply
that the distribution identified at θ = 0.6 is sufficiently robust to a broad spectrum of energy
consumption data, including those markedly different from the nominal. Extending the ambiguity
set does not reveal new distributions with significant deviations. This indicates that the solution
obtained for θ = 0.6 is already ’safe’ across a wide range of scenarios. Despite the same optimal
network design for both θ = 0.6 and θ = 1, the estimated charge-discharge cycles, as shown in
figure (3c), differ, influencing the perceived battery lifespan.
Comparing the most conservative results of the DRCC and BoU models, the DRCC model achieves
higher battery capacity with notably fewer charging installations. The analysis shows that the
DRCC model, by considering the energy consumption data, remains robust in extreme scenarios
with a significantly reduced number of charging installations and related costs.
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Table 2: Models performance comparison

Model Electrification Cost Battery Capacity Network designOFV(Euro) Relative
change

Capacity (kWh) Relative
change

Nominal 2.72 ∗ 106 - zline1=6.5;
zline2=6.5

- S: {F, 2, 3}; FF: {D, E2}

BoU Γ = 0 2.72 ∗ 106 - zline1=6.5;
zline2=6.5

- S: {F, 2, 3}; FF: {D, E2}

Γ = 0.1 3.12 ∗ 106 14% zline1=8.53;
zline2=7.85

zline1=31%;
zline2=21%

S: {F, 2, 3}; FF: {D, E2}

Γ = 0.6 3.82 ∗ 106 40% zline1=8.5;
zline2=8.99

zline1=31%;
zline2=38%

S: {B}; FF: {D, F, D2, 2}

Γ = 1 4.19 ∗ 106 54% zline1=9.7;
zline2=10.86

zline1=49%;
zline2=67%

S: {C}; FF: {D, F, D2, 3}

DRCC

ϵ = 0.1, θ = 0 2.72 ∗ 106 - zline1=6.5;
zline2=6.5

- S: {F, 2, 3}; FF: {D, E2}

ϵ = 0.1, θ = 0.1 3.19 ∗ 106 17% zline1=8.67;
zline2=9.29

zline1=33%;
zline2=43%

S: {2, D2}; FF: {D, F2}

ϵ = 0.1, θ = 0.6 3.38 ∗ 106 24% zline1=10.02;
zline2=11.54

zline1=54%;
zline2=77%

S: {-}; FF: {D, F2}

ϵ = 0.1, θ = 1 3.38 ∗ 106 24% zline1=10.02;
zline2=11.54

zline1=54%;
zline2=77%

S: {-}; FF: {D, F2}

S: standard charging station; FF: flash-feeding charging station; Network design column contains stop names (shown in
figure 1) that specific charging station types is installed

Conceived bus battery life

After determining the optimal design for each model, we explored the longevity of the bus batteries
in these models by examining the number of cycles until failure (in terms of battery aging). Battery
depreciation occurs in each charge-discharge cycle, and depth of discharge (DOD) in a cycle has a
strong effect on it. In this research each of three models results in different charge-discharge cycles
(shown in 3) that affects the battery life time. The number of charge-discharge cycles, denoted
by Ncycle, during the battery life decreases with changes in charge-discharge cycle. The DODk

i of
BEB for stop i in line k is expressed as Zang et al. (2022):

DODk
i =

(zk − y′i
k)

zk
, y′i

k ∈ [0, blowerzk] (24)

where y′i
k (i ∈ S) is the battery remaining when arriving to stop i in bus line k. Similarly, the

effect of charging process at charging stationsi in bus line k is captured by:

chargeki =
zk − Y k

i

zk
, Y k

i ∈ [0, bupperzk] (25)

where Y k
i (i ∈ S) is the battery level when leaving stop i in bus line k (with a charging station

installed). It’s worth noting that (Yi − y′i) is the charged quantity in stop i. Therefore, Ncycle

considering the charge-discharge cycle for each bus line k can be deduced by Wang & Hong (2015):

Nk
cycle = g1 ·

∑
i

((DODk
i )

−g2 + (chargeki )
−g2) (26)

where g1 and g2 are fixed constants related to the type of battery. Based on Dallinger (2013), for
a typical Li-ion battery, we set g1 = 1331, g2 = 1.825. Our analysis is then extended to focus on

(a) Nominal model (b) BoU model (c) DRCC model

Figure 3: Energy level in BEB upon leaving each stop, comparing three different models

bus line 1, with the understanding that the same methodology could be applied to bus line 2. We
selected the BoU model with Γ = 0.6 and DRCC model with ϵ = 0.1 and θ = 0.1 as our primary
scenarios for evaluating N line1

cycle , due to their comparable installed battery capacities (see in table
2). The results revealed that the battery longevity in terms of cycles was 513, 650, and 618 for
the nominal, BoU, and DRCC models, respectively. The robust models, both BoU and DRCC,
demonstrated an enhanced cycle count compared to the nominal model, attributed to their larger
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battery capacity and a network design that mitigates severe charge depletion. In the BoU model,
the placement of chargers regulates the DOD, yet this leads to a 40% cost increase compared to
the nominal model. Conversely, the DRCC model leverages observational data to achieve a similar
cycle lifespan with a substantially smaller cost increment.

Impact of observations

One of the primary goals of this research is to investigate the effects of energy consumption data
and the frequency of data collection on the optimal network design (shown in figure 4). We ana-
lyzed how the number of data points influences both the costs of network electrification (4a) and
the feasibility of solutions across 100 scenarios (4b). Our findings in (4a) reveal a correlation where
an increase in data points correlates with higher electrification costs. This is due to the model
accounting for more severe scenarios and increasing battery capacity, leading to elevated costs.
However, we observed steady cost lines in certain intervals, indicating that additional data points
in these ranges do not add worse energy consumption observations, suggesting a robust design for
these observation periods.
Furthermore, the study examines if the decisions derived from a specific set of data points remain
viable for daily operations across all observations. This aspect is evaluated by the number of feasi-
ble cases out of 100 scenarios (4b), where a higher count indicates more effective robust solutions.
A significant insight from our research is that nearly 40 data points collected are sufficient to derive
an optimal network design that is robust in approximately 90% of cases. Consequently, the DRCC
model has been shown to be capable of finding the robust distribution for energy consumption
with fewer data points, contingent on the scenarios characteristics.

(a) Observation quantity and system cost (b) Observation quantity and scenario feasibility

Figure 4: Effect of number of observations in the DRCC modeling on system’s costs and
performance

4 Conclusions

In summary, this study addresses the challenge of designing a BEB network with limited data, fo-
cusing on the placement and type of charging stations and battery capacity decisions. We compare
the effectiveness of different models, including nominal and robust optimization models, under real-
world energy consumption uncertainties. The findings demonstrate that the DRCC model offers a
more cost-effective and robust approach for BEB network design under energy consumption uncer-
tainties, outperforming nominal models and budget of uncertainty robust model, utilizing limited
data. Future analysis can include exploring the effects of different energy consumption distribution
scenarios on the optimization of network design and to reassess the results accordingly.
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