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Short summary

Current approaches to identifying driving heterogeneity often struggle with accurately deciphering
fundamental patterns inherent in driving behaviour. The concept of Action phase is proposed to
capture underlying driving characteristics with physical meanings. This study further recognises
Action patterns by clustering extracted Action phases. A Resampling and Downsampling Method
(RDM) is first applied to standardise Action phases length. Using features selected by Principal
Component Analysis (PCA), two clustering algorithms, i.e., Agglomerative clustering with dynamic
tree cut and X-means clustering, are utilised to group Action phases with high similarity. Six Action
patterns named “Catch up”, “Fall behind”, “Follow behind”, “Speed up”, “Slow down”, and “Hold
speed” are finally recognised based on clustering results. Further statistical analyses demonstrate
that velocity and time headway exhibit higher importance than other variables in characterising
driving behaviour. The methodology and findings presented in this study offer a nuanced approach
to interpreting driving behaviours, which can help to enhance the accuracy of driving heterogeneity
identification.
Keywords: Driving heterogeneity; Action pattern recognition; Action phase; Clustering.

1 Introduction

Driving heterogeneity, recognised as the differences in driving behaviours exhibited by different
driver/vehicle combinations under similar conditions, is widely acknowledged (Ossen et al., 2006).
Studies have shown that heterogeneity in driving behaviour can lead to a rise in traffic accidents,
congestion, and emissions (Sun et al., 2021; Kerner & Klenov, 2004). Further, user acceptance of
autonomous vehicles (AVs) has been found to depend on accurately comprehending and emulating
driving heterogeneity of human-driven vehicles (HDVs), such as human drivers’ preferred driving
styles (Tavakoli & Heydarian, 2022). Thus, understanding driving heterogeneity significantly en-
hances traffic operations and enables manufacturers to design safe and efficient automated vehicles
at various levels.

Existing studies have addressed driving heterogeneity by personalising driving styles based on
driving behaviour data such as vehicle kinematics variables (e.g., velocity and headway) and vehicle
dynamics variables (e.g., braking and throttle opening), which enable categorising drivers into
several groups (Zou et al., 2022). For instance, W. Wang et al. (2017) classified drivers into
two categories (i.e., normal, and aggressive) based on velocity and throttle opening data. In
another study, overtaking manoeuvres were identified as low-medium-high risk levels based on
speed and distance between vehicles (Figueira & Larocca, 2020). Other studies have utilised car-
following model parameters to distinguish driving styles (Sun et al., 2021). These methods capture
drivers’ static driving characteristics, while not capable of describing the inherent traits of driving
behaviour. This is because driving behaviour is a dynamic decision-making process (Zou et al.,
2022), and drivers may exhibit heterogeneous driving styles in different traffic scenarios. Even under
the same traffic scenario, the same driver’s behaviours might vary at different time intervals. These
have underscored the necessity of capturing driving heterogeneity from the underlying mechanism
of driving behaviour.

Studies have found that driving heterogeneity can be derived by decomposing driving behaviour
into distinct primitive patterns. Driving behaviour displays certain characteristics during the tran-
sition of driving manoeuvres (Terada et al., 2010). As such, some researchers segmented driving
behaviour data into primitives with unique characteristics (Bender et al., 2015; H. Liu et al., 2014).
By doing so, the characteristics of driving behaviour can be accurately captured by corresponding
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the traffic environment and driving manoeuvres. Using supervised learning approaches, different
patterns were extracted and assigned with semantic labels (e.g., rapidly closing in, falling behind)
by learning sample features like vehicle operating data (Zou et al., 2022). However, pre-labelling
tasks are labour-intensive, limiting the implementation of supervised learning technologies in driv-
ing pattern recognition (Ackerman, 2017). As a result, there is a growing interest in semantic anal-
ysis using unsupervised techniques. Higgs & Abbas (2014) identified a specific set of state-action
clusters and employed them to characterise potential driving patterns of passenger car and truck
drivers. Employing a hierarchical Dirichlet process-Hidden semi-Markov Model (HDP-HSMM),
W. Wang et al. (2018) extracted 75 primitive driving patterns from time series driving data. This
method allows for the identification of a wider variability in driving behaviour by encompassing
different driving characteristics. However, an excessive number of patterns, for example, 75, may
limit the categorization’s effectiveness due to reduced interpretability. This expansive classifica-
tion has limitations in fully clarifying fundamental driving behaviours and understanding driving
heterogeneity. As a result, continued efforts are required to overcome these challenges.

In our previous research (Yao et al., 2023), the concept of Action phases was introduced to capture
driving characteristics with physical meanings, thereby facilitating the identification of driving
heterogeneity. An Action phase is defined as a distinct segment of driving behaviour, where each
phase is characterised by specific, observable actions or changes in driving variables. These phases
are labelled according to the action trend exhibited by each variable within that phase. The ac-
tion trend space for each driving behaviour variable is represented as S = {I,D,H,L}, which
denotes ‘Increasing’, ‘Decreasing’, ‘keep in a high value’, and ‘keep in a low value’ of variables,
respectively. Four variables named velocity (v), acceleration (a), time headway (T ), and speed
difference (∆v) are considered. Each Action phase is uniquely identified by a label name, where
every variable within the phase adheres to a single action trend. Consequently, the collection of
all the Action phases extracted from a certain dataset forms the Action phases Library for that
dataset, representing the complete range of driving behaviour characteristics under specific traffic
flow conditions. This concept expands the scope of the “action point” (Knoop & Hoogendoorn,
2015) by incorporating additional variables to provide more comprehensive information about driv-
ing behaviour. However, the introduction of additional variables can complicate the interpretation
of driving behaviour. An increase in the number of label names leads to more distinct Action
phases, which extends Action phases Library with many Action phases differing only slightly in
their representation of driving behaviour. As such, consolidating Action phase with similar char-
acteristics into a smaller number of patterns can assist in interpreting driving behaviour through
the analysis of group-specific characteristics.

To bridge these research gaps, this study presents a method to classify Action phases into vari-
ous Action patterns, paving the way to identify driving heterogeneity. The unique contributions
of this study include: (i) The method applies Action phases with physical meanings in an un-
supervised learning framework, which holds dual advantages in eliminating pre-defined bias and
ensuring behaviourally interpretable results, and (ii) The proposed clustering calibration process
assists in assessing variable importance and deriving Action patterns with interpretable semantic
meanings. Evaluation using real-world datasets demonstrates various Action patterns with unique
characteristics, reflecting empirically observed driving behaviours. The findings demonstrate the
prospective advantages of using Action patterns to illustrate heterogeneity in driving behaviour.

2 Methodology

In this section, we introduce the methodology of Action pattern recognition, including an overview
of the recognition process and techniques employed in each step.

Action pattern recognition aims to categorise all Action phases in Action phase Library into several
groups which can be interpreted with semantic meanings. The results can be used in driving be-
haviour analysis such as guiding the labelling process of driving heterogeneity based on supervised
machine learning methods. The process of Action phases extraction is outlined as the first part
in Figure 1, which details can be found in our previous work (Yao et al., 2023). Using extracted
Action phases, unsupervised learning methods are utilised to cluster similar Action phases and
distinguish different groups, and Aciton patterns are recognised by analysing these clusters.
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Figure 1: An overview of the process for Action pattern recognition.

Note that Action phases accommodate driving trajectory segments with varying lengths to provide
a more detailed representation of driving behaviour characteristics, thus adding complexity to time-
series analyses as most algorithms necessitate input data of equal length. To standardise the length
of input data while preserving the information of the original Action phases to a large extent, the
Resampling and Downsampling Method (RDM) is utilised. Simply, Action phases shorter than
a referred length, i.e., median length, are resampled using Fast Fourier Transform (FFT) and
Inverse Fourier Transform (IFFT) (Q. Liu et al., 1998) and those exceed the referred length are
downsampled using isometric extraction. Since the extracted Action phases are multi-variable
time-series driving trajectory data, feature selection is conducted to avoid limitations of high-
dimensional data redundancy (Sun et al., 2021). The extracted features serve as input for the
subsequent clustering analysis with an unknown cluster number k.

In the field of data clustering, various clustering approaches have been proposed, each with inher-
ent techniques. According to Fraley & Raftery (1998), these clustering approaches are generally
divided into two categories: hierarchical and partitioning techniques. In this study, We utilise
Agglomerative clustering with dynamic tree cut and X-means, representing hierarchical and par-
titioning methods, respectively. Agglomerative clustering can detect clusters within clusters and
adapt to the varying densities and shapes of the data clusters, which is particularly useful for Action
phases data that cluster sizes may vary significantly. Specifically, it follows a bottom-up approach,
which starts by considering each data point as a single cluster and then progressively merges the
most similar cluster pairs (Ackerman, 2017). The process continues until a single cluster is formed
or a predetermined stopping criterion is reached. The dynamic tree-cut method further refines this
process by analysing dendrogram structures to make context-sensitive decisions on where clusters
should be divided. In contrast, X-means clustering, an extension of the K-means algorithm, of-
fers a flexible approach to determining the optimal number of clusters. Rather than requiring a
predefined number of clusters, X-means starts with a lower bound for k and iteratively adjusts
it, trying to find the best number of clusters according to selection criterion such as the Bayesian
Information Criterion (BIC) (Pelleg & Moore, 2000). This method maintains a level of scalability
and efficiency similar to K-means while mitigating the dependency of pre-defined cluster numbers.
The integration of the aforementioned two clustering methods can facilitate a more nuanced and
accurate categorisation of Action phases and recognition of Action patterns.

3 Experiments

Data preparation including Action phases extraction and feature selection is first introduced in
this section. Then, experimental settings of clustering are provided.

As proposed by Yao et al. (2023), driving behaviour trajectories are segmented to yield Ac-
tion phases, with each driving variable in these phases displaying a single trend. For example,
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(D,L,L, I) indicates the vehicle’s velocity (v) has a trend of decreasing, the acceleration (a) and
time headway (T ) are keeping a low value, and the speed difference (∆v) is increasing. All the
Action phases extracted from one dataset (representing a specific traffic flow condition) constitute
the Action phase Library of this dataset, which is adopted as the initial data in this study. We
adopted 2800 vehicles from the Lyft5 dataset in this study, and the size of the Action phase Library
amounts to 18800.
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Figure 2: Distribution of PC1’s cumulative contributions.

This study employs a widely-used unsupervised feature selection method, Principal Component
Analysis (PCA), to cohere variables and extract significant features. As the results displayed in
Figure 2, the cumulative contribution of the first Principal Component (PC1) exceeds 95% for
96.08% of Action phases, as indicated by the red dotted line in shows. Consequently, PC1s are
selected and used as the input for subsequent clustering analysis.

For X-means clustering, the similarity between clusters is measured using a widely-used metric,
i.e., Euclidean distance, and the cluster k ranges from 4 to 7. For agglomerative clustering, results
are evaluated by examining different (intermediate) clusters, i.e., branches. The final clusters are
determined by a linkage function with certain thresholds. There are several linkage functions,
each with its specific focus. For example, the Weighted Pair Group Method with Arithmetic
Mean (WPGMA) algorithm computes the distance between two clusters based on the average
pairwise distances in the original clusters. And, Ward’s method aims to minimise the variance
within clusters (Murtagh & Contreras, 2012). We employed commonly used linkage functions
including ‘weighted’, ‘average’, ‘complete’, and ‘ward’ in our clustering calibration process. Both
agglomerative clustering and X-means are evaluated by three commonly used indexes: Silhouette
Score (SS), Calinski-Harabasz Index (CHI), and Davies-Bouldin Index (DBI) (X. Wang & Xu,
2019). Specifically, the Silhouette Score is calculated using (b − a)/max(a, b), where a and b
represent the mean intra-cluster distance and the mean nearest-cluster distance for each sample,
respectively. The best value is 1 and the worst value is -1. CHI score is higher when clusters
are dense and well separated. For the DBI score, values closer to 0 represent better clustering
performance.

4 Results and discussions

This section presents the results of Action pattern recognition, in which variable importance is
evaluated as well.

Table 1 shows the results of Agglomerative clustering with different linkage functions and X-means
clustering with different k values. As the bold text highlighted, Agglomerative clustering with a
‘ward’ linkage function and X-means with an k = 6 outperform their counterparts, respectively.
Both of the optimal methods indicate six clusters, recognising six Action patterns. All action
trends in each cluster are counted and visualised, as shown in Figure 3. Gradients of colour
represent the percentage frequency of each action trend in different clusters. Note that frequency
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Table 1: Results of agglomerative and X-means clustering.

linkage SS CHS DBS Clusters

Agglomerative
clustering

average 0.37 4229.43 0.72 8
complete 0.28 6286.08 0.90 8
weighted 0.31 5823.54 0.92 7

ward 0.41 14673.48 0.83 6

X-means

/ 0.44 14115.50 0.81 4
/ 0.45 14638.43 0.79 5
/ 0.46 15768.43 0.80 6
/ 0.38 14740.08 0.00 7

characteristics of action trends can correspond to each other between two clustering methods. For
example, Cluster 3 of Agglomerative clustering has similar colour gradients with Cluster 1 of X-
means clustering. Furthermore, the frequency statistics of Action phases in each cluster also show
the corresponding similar size between the two clustering methods, as presented in Table 2. This
consistency in pattern and size of clustering results illustrates the underlying six patterns of Action
phases. According to Table 1, X-means shows better clustering results than the Agglomeration
method, thus we adopt X-means results to conduct further analyses.
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(a) Agglomerative Clustering with Dynamic Tree

I D H L
action trend

v
a

T
v

Va
ria

bl
es

0.11 0.33 0.14 0.02

0.16 0.17 0.15 0.19

0.11 0.14 0.14 0.25

0.13 0.17 0.13 0.20

Cluster 1

I D H L
action trend

0.28 0.17 0.03 0.24

0.18 0.18 0.18 0.11

0.18 0.18 0.14 0.16

0.22 0.15 0.17 0.15

Cluster 2

I D H L
action trend

0.12 0.14 0.27 0.09

0.15 0.16 0.15 0.21

0.16 0.11 0.20 0.19

0.14 0.15 0.14 0.20

Cluster 3

I D H L
action trend

0.21 0.12 0.10 0.24

0.18 0.17 0.16 0.14

0.14 0.14 0.08 0.27

0.17 0.14 0.13 0.20

Cluster 4

I D H L
action trend

0.15 0.18 0.08 0.27

0.15 0.18 0.16 0.18

0.25 0.14 0.26 0.07

0.17 0.18 0.20 0.14

Cluster 5

I D H L
action trend

0.13 0.17 0.25 0.14

0.17 0.15 0.19 0.17

0.15 0.29 0.18 0.06

0.18 0.21 0.23 0.11

Cluster 6

0.10

0.15

0.20

0.25

0.30

(b) X-means

Figure 3: Statistics of action trends in each cluster.

Table 2: Statistics of Action patterns.

Method Clusters and the corresponding size

Agglomerative clustering 1 6 3 5 4 2
3301 3474 4124 1877 480 5544

X-means 4 5 1 2 6 3
3025 3299 3902 2603 474 5497

In each cluster, action trends with high percentages are regarded as main variables and used to
interpret driving behaviour and recognise Action patterns. For example, in Cluster 1, velocity (v)
and time headway (T ) are main variables with action trends of ‘D’ and ‘L’, indicating that velocity
is decreasing and time headway is keeping. Thus, this cluster can be interpreted as a “Slow down”
pattern. Similarly, in cluster 6, time headway decreases and velocity keeps, indicating that the
following vehicle is closing its preceding vehicle, thus labelled as a “Catch up” pattern. In this way,
six Action patterns are recognised according to their observations, as demonstrated in Table 3.
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Table 3: Action pattern interpretation.

Clusters Main
variables

action
trend

Observations Action
patterns

1 v, T D, L Speed decreasing, time headway keeping Slow down
2 v, ∆v I, I Speed increasing, speed difference increasing Speed up
3 v, T , a H, H, L Speed keeping, small acceleration Hold speed
4 T , v L, L Time headway keeping, speed keeping Follow behind
5 T , v I, L Time headway increasing, speed keeping Fall behind
6 T , v D, H Time headway decreasing, speed keeping Catch up

Further analyses of clustering results are conducted to figure out variable importance. Action trends
are illustrated using slope, symbolising the changing rate of a given variable. A positive slope por-
trays an increasing trend, such as an increase in velocity, while a negative slope implies a decreasing
trend. The magnitude of the slope reflects the rate of change. Especially, several adjacent gentle
slopes form fluctuations, representing a ‘Keeping’ trend of variables. Given that variables usually
manifest identical trends in different ways, such as linear increase, convex/concave progression, or
slightly fluctuating increase, linear regression may struggle to precisely identify variable trends.
To capture local trends within specified intervals in dataset and retain overall trend accuracy, we
employ a ‘sliding window’ method (Chu, 1995). A linear regression is computed at each window
position, the final slope of the variable data, which serves as the trend index for each variable, is
derived by averaging the slopes of these windows. Figure 4 shows the distribution of slopes for each
variable in different clusters. The similarity of distributions is evaluated using Kullback–Leibler
divergence, which is denoted as DKL(P ||Q), measuring how one probability distribution P is dif-
ferent from a second, reference probability distribution Q (Kullback & Leibler, 1951). Results of
KL divergence evaluation are illustrated in Figure 5 where the gradient of colour bar from blue to
red represents the value from small to large. It can be observed that distributions of v and T in
the six clusters have large differences compared to a and ∆v, indicating their greater importance
in recognising Action patterns. This knowledge can be used to manually label Action patterns in
driving heterogeneity identification.
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Figure 4: Distributions of variables in each cluster.
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5 Conclusions

To capture characteristics of driving behaviour and facilitate identification of driving heterogene-
ity, this study proposed a method to recognise Action patterns based on Action phases clustering.
Data preparation includes standardising lengths of Action phases using a Resampling and Down-
sampling Method (RDM) and selecting features using PCA. Then, two clustering algorithms, i.e.,
Agglomerative clustering with dynamic tree cut and X-means clustering, were utilised to distin-
guish groups of Action phases. Six clusters were finally observed, indicating six different Action
patterns named “Speed up”, “Slow down’, “Hold speed”, “Catch up”, “Fall behind”, and “Follow be-
hind”. Further analyses of clustering results illustrate varied variable importance in Action pattern
recognition. Velocity v and time headway T exhibit higher importance than acceleration a and
speed difference ∆v, suggesting that they reflect more characteristics of driving behaviour. The
findings of this study provide knowledge to label driving trajectories in driving behaviour analysis,
which can help to address label scarcity in supervised learning driving heterogeneity identification
and enhance tasks such as driving behaviour modelling and driving trajectory prediction.
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