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Short summary

A prominent problem plagued the ride-sourcing service providers is the instantaneous real-time
demand-supply imbalance. This entails terrible user experience and causes adverse sustainable
results such as customer churn for the platform, which will damage both drivers’ income and the
platform revenue. To reduce passengers’ abandonment due to long waiting time by improving
their waiting experience, we propose an incentive-based queue management strategy— a discount
method— to retain passengers in a post-peak period. We regard the waiting process for a ride-
sourcing service as an M/M/c+M queue system with impatient passengers, and model passengers’
reneging behaviors by characterizing the impact of waiting discounts and updated queue informa-
tion on their travel utilities. Based on such a behavior model, we can analyze the effect of discount
strategy on the queuing process which allow us to maximize the platform’s profit growth by tai-
loring the discount strategy. Our result shows that the discount strategy can effectively increase
the platform profit. Under the specific condition of the discount strategy, the earlier the strategy
is implemented in the post-peak period, the higher platform profit can be achieved. Keywords:
ride-sourcing market; queueing process; discount strategy; reneging behavior

1 Introduction

Ride-sourcing services provide a suite of strategies for providing travelers effective choices to en-
hance accessibility and improve travel reliability. However, the enormous growth has exacerbated
the imbalance between the vehicle supply and ride-sourcing travel demand, especially during peak
commuting hours. Long waiting time further increases order cancellations on the demand side,
which not only wastes passengers’ time but also reduces the income of drivers and platforms.
Moreover, as an important measurement in travelers’ mode choices, long waiting time reflects a
relatively poor accessibility and quality of ride-sourcing services, leading to a long-term user churn.

In an effort to address this challenge, surge pricing has been widely adopted by most ride-sourcing
platforms. This approach increases trip fares to incentivize more drivers to enter the hot areas and
meet spiking demand. However, this approach has received criticism from scholars in recent years,
who have raised concerns about its potential adverse impact on both riders and drivers.(Castillo,
2023; Dholakia, 2015; Goncharova, 2017). Some scholars have characterized it as a form of price
discrimination or price gouging (Dholakia, 2015). This is because surge pricing may lead to higher
fares for riders who are willing to pay more, while other riders may be priced out of the market,
leading to the passengers abandonment. Others have suggested that surge pricing may damage
the interests of drivers, potentially leading to a decrease in their earnings unless they strategically
plan their actions in response to surge pricing dynamics (Goncharova, 2017). As a result of these
concerns, there has been a growing interest in alternative management approaches that increase
the platform’s matching rate while considering passenger cost sensitivity. Hence, we propose a
novel waiting discount strategy in this paper.
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Our strategy aims to reduce passenger’s cancellation during peak periods of queuing, thereby in-
creasing the platform’s matching rate and revenue. During peak periods, the queue undergoes
two stages due to the dynamic arrival rate of users: the queue accumulation stage (pre-peak pe-
riod) and the queue dissipation stage (post-peak period). To prevent a further exacerbation of
supply-demand imbalances, we focus on implementing the discount strategy during the post-peak
period, during which the arrival of passengers slows down but there remains a large number of
passengers in the queue with the long waiting time. Implementing a discount strategy during this
period can increase their willingness to wait, thereby increasing the number of matched orders
and fully utilizing supply resources. This not only increases the platform’s revenue but also re-
duces driver idle and cruise time while increasing their earnings. Compared with surge pricing,
the discount strategy achieves revenue increment for the platform without leading to riders feel-
ing priced out of the market. This, in turn, promotes long-term customer stickiness to the platform.

We first analyze the discount strategy on queuing process. Discount strategy has dual impact on
the passenger behavior. Firstly, the discount directly reduces the economic cost of the trip, thereby
decreasing the likelihood of passengers abandoning the queue. This effect is intuitive and aligns
with general economic theories of consumer behavior. Besides, the discount indirectly influences
the delay announcements. Reduced trip cancellations owing to more attractive fares can lead to
increased wait times for subsequent passengers. This, in turn, heightens the probability of these
new arrivals abandoning the queue. Therefore, we propose a comprehensive macro-micro mod-
eling framework to evaluate the effect of discounts strategy on queuing process and analyze the
steady state of queuing system. Specifically, at a macro level, the queuing process is delineated
by an M/M/s+M Markov chain; at a micro level, passenger decision-making is characterized by a
logit choice model with random utilities. By integrating the macroscopic model of passenger flow
with the microscopic insights into individual abandonment behaviors, we are able to calculate the
reneging rate of the queuing process using the fixed-point method across various discount strategies.

From the perspective of platform, we further quantify the impact of different discount strategies on
platform performances and attempt to design an optimal discount strategy based on the proposed
model to improve the performances. By introducing the queue length function, we compare dif-
ferent strategies in terms of the revenue (increasing the passenger’s retention) and cost (providing
discounts) brought to the platform and calculate the generated profit. The numerical experiment
verifies the effectiveness of the proposed discount strategy and reveals some interesting insights for
the mechanism design.

2 Methodology

In this section, we introduce a micro-macro modeling framework to understand the interplay be-
tween passenger behavior and discount strategies. We also propose a methodology to assess the
effectiveness of these strategies, considering both the potential revenue increase through improved
passenger retention and the cost implications of implementing discounts.

2.1 Micro-macro framework with discount strategy

In our micro-macro modeling framework, we obtain the impact of discount strategy on the queuing
process by integrating insights from individual-level (micro) and queue-level (macro) perspectives
by the average reneging rate of passengers λR.

2.1.1 Macro queuing process of passengers

We present a queuing model to capture the macro queuing process of passengers. The arrival
of passengers and the service of drivers follow different Poisson distributions with the mean of λ
and θ respectively. Assuming that the passengers are impatient, we suppose that the patience
threshold of each individual is a realization derived from an exponential distribution with rate r,
0 < r < sθ, as passengers are more willing to get served. Therefore, in a multi-server queue, the
queuing process can be viewed as an M/M/s+M queuing system as shown in Fig 1.
where s represents the number of servers. The death rate of each state depends on the the number
of passengers i in the system. When i ≤ s, the death rate at the ith position is iθ, as passengers
exit the queue by being served. When i > s, the death rate at the ith position is sθ + (i− s)r, as
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Figure 1: Macro queuing model

passengers leave the queue either by abandoning the line or being served. We focus on the steady-
state of the queuing process. When the multi-server queue reaches steady state, the steady-state
probability p(i) is formulated as follows,

p(i) =

{
p0 ∗ λi

i!θi , 0 ≤ i ≤ s.
p0

s!θs ∗ λi

(sθ+r)(sθ+2r)...(sθ+(i−s)r) , i > s.
(1)

where p0 represents the probability that there is no customer in the system with the formulation,
which is given by,

p0 =
1

[
∑s

i=0
λi

i!θi +
λs

s!θs (
γ( sθ

r ,λr )∗exp(λ
r )

(λ
r )

sθ
r Γ( sθ

r )
− 1

Γ( sθ
r +1)

)]
(2)

Based on the steady-state probability, the expected number of waiting customers in queue, Lq, is
given by the sum of the product of the steady-state probability p(s+n) of there being n customers
in the queue, across all possible system states.

Lq =

∞∑
n=0

p(s+ n) ∗ n (3)

As the patience time of passengers follows a specific exponential distribution, the average reneging
rate of passengers is,

λR = r ∗ Lq (4)

2.1.2 Micro queuing behavior of passengers

We characterize a passenger’s endogenous decision on abandonment by a dynamic utility function.
According to the discount strategy, passengers at different initial positions have varied chances
of receiving the discount, hence, dynamic utility of a passenger is not only related to her current
position, but also the position she joins the queue. To capture this, we express the dynamic utility
function of a passenger as follows

Uk
n(a

k
n) = φk

n(a
k
n) + ϵkn(a

k
n) (5)

where k represents the the position she join in the queue and n represents her current position in
the queue, n ≤ k. Uk

n depends on her decision, akn, where akn = 0 for abandonment and akn = 1
for staying in line. Eq. 5 is composed of the deterministic utility φk

n and a random idiosyncratic
term ϵkn including external factors that influence the passenger’s preference for either choice. We
assume that the random utility term follows a Gumbel distribution. Consequently, the reneging
probability qkn of the passenger at position n given she join in the kth position can be derived by
a logit model,

qkn =
eφ

k
n(a

k
n=0)

eφ
k
n(a

k
n=1) + eφ

k
n(a

k
n=0)

(6)

And the probability that a passenger will abandon given she joins at the kth position Qk can be
formulated as,

Qk = 1− Sk = 1−
k∏

i=0

(1− qki ) (7)
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where Sk represents the probability that a passenger, who initially joins the queue at position k,
will remain in the queue until being served.
The deterministic utility function can be formulated as,

φk
n =

{
V − β ∗ E[Dn]− [(1− ϕk)R+ ϕk ∗R ∗ (1− d)], if akn = 1
0, if akn = 0

(8)

where V denotes a representative passenger’s valuation of accomplishing the trip, β∗E[Dn] denotes
the cost of waiting at position n, in which β is the value of time and E[Dn] is the expected delay
announcement. The expression (1− ϕk)R+ ϕk ∗R ∗ (1− d) denotes the expected discounted trip
fare, accounting for possible discounts. Within this, ϕk indicates the probability that a passenger
can receive the discount when she joins the queue in the kth position, d is the discount size, and
R is the original trip fare.

The platform estimates the distribution of the delay announcement Dn based on the passenger’s
position and the service condition sθ. The time until a passenger gets served in the nth position is
the time it takes for all of the passengers waiting ahead enter service plus the time required for a
service completion (when all servers are busy). Therefore, the delay announcement can be captured
by a pure-death process and Dn represents the downcrossing time from state s+ n to absorption
state s. Given a constant death rate, Dn is distributed according to an Erlang distribution. This
distribution results from the convolution of n identical and independent exponential distributions,
each with a rate of sθ. The density distribution and cumulative distribution are given by,

gn(t) =
1

(n− 1)!
(sθ)ntn−1e−sθt (9)

Gn(t) = 1−
n−1∑
k=0

1

k!
e−sθt(sθt)n (10)

The expectation of the delay announcement Dn is E[Dn] =
∑n

k=0
1
sθ = n

sθ . Under our discount
strategy, passengers facing an initial delay announcement exceeding a predefined waiting time
threshold T are eligible for a discount. Thus, ϕk = P (Dk > T ).

The average reneging rate is calculated by adding up the probabilities of new arrivals abandoning
the service at each state.

λR =

∞∑
k=1

λp(s+ k)Qk (11)

2.1.3 Solution algorithm

Until now, with the average rate of abandoning passengers connecting the queue process at the
macro level and individual behavior at the micro level, we complete the framework of the delay-
reaction system where the patience threshold parameter r is an endogenous variable, and the other
parameters are exogenous. Under this kind of circumstance, the exact value of the patience time
distribution parameter can be derived through the fixed-point method which can be formulated as
f(r) = r.

2.2 The performance of the discount strategy

In this section, we compare the profit of the platform during the queuing process under different
discount strategies. For the platform, offering discounts diminishes the revenue of each order, yet
it also increases the number of completed orders. Consequently, the impact of providing discounts
on the platform’s profit is uncertain. To quantify the revenues and costs brought by a discount
strategy, we introduce an expected queue length function with time in the queuing process. In
an M/M/s+M queuing model the arrival rate, service rate, and reneging rate are λ, θ, and r
respectively. The expected queue length function of time can be expressed as follows:

X(t+ h) =

 X(t) + 1, with probability λh+ o(h).
X(t)− 1, with probability [sθ + rX(t)]h+ o(h).
X(t), with probability 1− [λ+ sθ + rX(t)]h+ o(h).

(12)
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By solving this equation, we obtain the function of time-dependent queue length as follows,

X(t) = C1e
−rt +

λ− sθ

r
(13)

where C1 is determined by the specific queue length at the initial time of our interest.
In the post-period, given a discount strategy is triggered when the queue length reaches I, the
queuing process then is divided into two distinct phases. The pre-discount phase covers the duration
from 0 ≤ t ≤ tI , and the post-discount phase spans tI < t ≤ tIe, where tIe denotes the time when the
queue dissipates or the time that queue length reaches to 0. The moment tI is defined as the point
in time when the queue length reaches I. Throughout both the pre-discount and post-discount
queuing process, the rates of passenger arrival λ and driver service θ remain constant. However,
the introduction of the discount incentive leads to a change in the passenger reneging rate from
r to a new value r′. Both r and r′ can be determined from the model described in Section 4.1.
With these considerations in mind, the queue length X(t) at any given time t can be represented
as a two-part piecewise function as follows. The initial queue length for the pre-discount phase is
assumed to be I0 at t = 0 while for the post-discount phase, it is I at t = tI , tI = X−1(I).

X(t) =

{
(I0 − λ−sθ

r )e−rt + λ−sθ
r , 0 ≤ t ≤ tI .

(I − λ−sθ
r′ )er

′(tI−t) + λ−sθ
r′ , tI < t ≤ tIe.

(14)

We further model the queue length as a discrete variable. Therefore, the queue dissipation time
can be expressed as the sum of the time durations the queue spends at each length, i.e., tIe =
TI0 + TI0−1 + ... + TI+1 + T ′

I + T ′
I−1 + ... + T ′

1. T ′
n and Tn represents the time duration that the

queue spends at length n with and without the discount strategy respectively.

Tn =
1

r
ln(1 +

r

r(n− 1) + sθ − λ
) (15)

We then calculate the platform’s revenue and associated discount costs based on the duration
for which the queue remains at each specific length. Specifically, let RV I denote the revenue
generated by the platform when a discount is offered at a queue length of I, and TDI represents
the revenue loss incurred by the platform for the same discount offered length. Thus, the profit
derived from offering this discount, prior to the dispersal of the queue, is quantified as RV I −TDI .
The expression of RV I and TDI are shown as follows,

RV I = tIe ∗ sθR ∗ c = (TI0 + TI0−1 + ...+ TI+1 + T ′
I + T ′

I−1 + T ′
1) ∗ sθR ∗ c (16)

TDI =

I∑
i=1

T ′
iλ(ϕ

idR)Si (17)

For Eq.(16), the platform revenue is the product of the number of completed orders and the com-
mission fee per order. Here, the former is represented as the total service rate multiplied by the
queue dissipation time. The latter is determined by the order price R and the commission rate c.
For Eq.(17), the revenue loss (discount cost) is calculated by summing the product of the number
of passengers arriving at different queue lengths and the corresponding revenue loss of the platform
at those queue lengths. This is based on the understanding that only those passengers who are
ultimately served will actually receive the discount.

Once we have established a method to quantify the effectiveness of a discount strategy, our focus
is to identify the optimal discount strategy with an objective function of platform profit growth
represented by the metric of percentage increase in revenue. The specific objective function is
formulated as follows,

max
(d,T,I)≥0

(RV I − TDI)− (RV 0 + (tIe − te)λRc)

RV 0
(18)

where (RV I − TDI) − (RV 0 + (tIe − t0e)λRc) is the profit increment of the platform between the
scenarios with and without the discount. (RV I−TDI) is the platform’s profit before the dispersion
of the queue (i.e., for t < tIe) given the discount, RV 0 is the platform’s profit before the dispersion of
the queue (i.e., for t < t0e) without the discount strategy. After the queue dissipates, the platform’s
profit depend on the passenger arrival rate. Therefore, platform’s profit without the discount from
t = 0 to t = tIe is RV 0+(tIe − t0e)λRc, where (tIe − t0e)λRc is the profit of the platform from t0e to tIe.
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3 Results and discussion

We first identify the ideal discount strategy with the proposed platform profit growth maximization
model for a ride-sourcing platform. We plot the profit growth under the strategy to explore
the implications of the three discount-related variables. We assume that the common exogenous
parameters are defined as follows1: λ = 1 pax/min, sθ = 2 pax/min, R = 3+0.7∗ trip time(USD),
trip time = 13min, β = 3 usd/min, V = R ∗ v(USD), v = 1.5, c = 0.3.

Figure 2: Platform profit growth under the discount strategy

From the contour plots, we can observe that the profit growth under the discount strategy can
be positive when the discount strategy is implemented. According to common sense, providing
incentives to passengers is meaningless when the demand exceeds the supply because the number
of answered orders is limited by the supply resources. However, the results of this study show that
a well-designed discount strategy can lead to an increase in the platform’s profit by maximizing
the utilization of the supply.

By comparing the profit growth under different scenarios shown in Fig 2 (a), (b) and (c), we can
observe when the discount strategy is implemented earlier (i.e., when the initial queue length is
longer), the platform obtains more profit. The result indicates the timing of implementing the
discount strategy is crucial to the success of the strategy, if the discount strategy is implemented
too late, the platform may miss out on potential revenue opportunities. Besides, the earlier the
discount strategy is used, the greater the discount intensity that the platform needs to provide.
This is because longer waiting times require larger discounts to reduce cancellations. However,
the optimal waiting time threshold has hardly changed, which may be because the waiting time
threshold reflects a reasonable waiting time that is unrelated to the number of people queuing and
is instead related to supply and demand.

Additionally, we can observe from the contour plot that both too small (decreasing d or increasing
T ) and too large (increasing d or decreasing T ) discount sizes lead to a decrease in platform profit
given the implementation condition. This is because excessively small discounts cannot effectively
retain passengers, while excessively large discounts result in discount costs that exceed the increased
revenue brought by the strategy. The contour lines corresponding to smaller discount sizes are
sparser, while those corresponding to larger discount sizes are denser, indicating that platform
profit changes more rapidly as discount size increases. In other words, as discount size increases,
its impact on platform profit becomes more significant.

4 Conclusions

In this study, we intend to characterize such interactions and determine whether an incentive strat-
egy for passenger retention should be implemented, as well as how to design appropriate incentives
to maximize the platform’s revenue under various conditions. Our study fills the research gap
of characterizing the interactions between passengers’ queuing behaviors, incentives and updat-
ing queue information in on-demand mobility systems. Besides, it also offers a reference to the
ride-sourcing platform in how to design an incentive strategy according to the actual supply and

1The data is from New York City Taxi Limousine Commission
https://www.nyc.gov/site/tlc/index.page.
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demand conditions and allocate resources reasonably, so as to improve its revenue without affecting
the passengers’ utility.
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