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Short summary

This paper examines the importance of public transport’s unique characteristics in the estima-
tion of public transport route choice models by applying clustering analysis to identify significant
patterns in the sampled data. The proposed methodology employs a data-driven approach for
generating the choice set and for characterizing the important explanatory variables in the route
choice model. The utility specification of the public transport route choice model is derived from
the feature importance obtained in the clustering results. The feature selection based on the clus-
tering yields significant explanatory variables in the public transport route choice model.
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1 Introduction

The significance of understanding route choice behavior is well-known in transportation. Many
studies have been conducted over the years, investigating the problem in a variety of aspects,
focusing mainly on car drivers’ behavior (Prato, 2009). The specification and estimation of route
choice models are not trivial tasks. The choice model itself includes a choice set generation process,
which is required to infer the alternatives considered by the individuals. This process is very
demanding, due to the large number of possible alternatives (Prato, 2009), and it is more complex
in public transportation. This is because of the additional travel characteristics that should be
considered in the route choice process, such as the number of transfers, access or egress distances,
and transit frequency. Those characteristics have a great influence on the passengers’ behavior,
as discussed in Anderson (2013). Understanding the preferences of public transport users and the
impact of the additional travel characteristics is essential for public transport network and service
planning.
Recent studies have demonstrated the capabilities of utilizing data-driven methods to deal with
complex problems. For example, Elizalde-Ramírez et al. (2019), proposed a method that aims to
capture the travel plan opportunities in the public transport network using artificial intelligence
(AI). Formulating public transport characteristics as features for the application of AI and Ma-
chine Learning (ML) tools enables further research on route choice behavior, such as route choice
model estimation. Arriagada et al. (2022) tried to reveal strategy heterogeneity among public
transportation users using smart-card data. Marra and Corman (2020) tried to find an efficient
choice set algorithm for multimodal public transportation based on Automatic Vehicle Location
data; this data allows for precise mapping of the alternatives but requires additional knowledge
of the users’ choices, in contrast to GPS trajectory. Tomhave and Khani (2022) discussed the
importance of the unique characteristics in public transport route choice, and based their work
on on-board (OB) survey data, while Yao and Bekhor (2020) presented a data-driven choice set
generation method, in which the choice set was sampled using clusters created from household
travel survey data. However, their work was conducted only for private car mode.

Although route choice problems have been extensively researched over the years, data-driven ap-
proaches to such models in the context of public transportation have not been fully explored. This
study aims to examine the importance and influence of public transport’s unique characteristics on
the route choice model estimation. Specifically, the paper will use feature importance derived from
the application of clustering on household survey data and include the significant features in the
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public transport route choice model. The paper provides additional insights into the passengers’
behavioral preferences that contributed to the route choice model explainability by utilizing the
clustering analysis results.

2 Methodology

The suggested methodology employs a data-driven approach for generating the choice set alterna-
tives and for characterizing the important explanatory variables for the route choice model.
This methodology relies on five major steps: data preparation, choice set generation, feature
selection, model specification, and model estimation.

Data Preparation

The data used in this paper is based on the Tel-Aviv Metropolitan household travel survey from
2016-2017. A detailed description of the data collection process can be found in Nahmias-Biran et
al. (2018). This data contains GPS samples and household information on the individuals in the
survey. In addition, the highway and transit networks including all service lines of the Tel-Aviv
metropolitan area were used in the process.
The public transport route choice model is derived only for trips conducted in this mode; therefore,
only trips made by the passengers that choose public transport as their mode were considered. In
this paper out of 3,257 trips identified as public transport trips, 1,898 were processed by manually
map-matching the GPS trajectories to the network. From the map-matched trips, 1,007 were
found valid for clustering analysis, containing at least 70% overlap with the real observations in
the dataset. Finally, 882 trips were used in the final public transport route choice model, which
included at least two alternative routes.
Table 1 contains overall statistics from the 1,007 valid observations. The average number of trips
per person is equal to 1.8, a reasonable value that indicates that the data set contains both trips in
different directions per day. 16.5% of the trips contained transfers and overall we had inter-urban
and urban trips in the data set.

Table 1: Observation Statistics

Observation Statistics

Unique users 558
Trips with transfers 167
Avg. number of trips per person 1.8
Min trip Length 0.5 Km
Max trip Length 66.8 Km
Avg. trip Length 6.4 Km

Choice-set generation

For the 1,898 map-matched routes, the route choice set was generated using the Pathfinder al-
gorithm (Dial, 1967) that was implemented in the commercial software package TransCAD. We
considered three different scenarios for the transit penalty settings (walking time weights and trans-
fer weights) in the algorithm, using multiple scenarios for each penalty combination. By running
different scenarios, we were able to generate additional routes to the deterministic Pathfinder al-
gorithm. In this way, we can detect diverse alternatives in the choice set, which is essential for
covering different characteristics and accounting for the real-world complexity into the process of
users’ choices.

Feature Selection

For the map-matched trips, we run the K nearest neighbors (Knn) clustering method (Fix &
Hodges, 1989). As discussed in Yao and Bekhor (2020), in order to properly perform clustering,
there is a need to normalize the route characteristics attributes, used as features in the algorithm.
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Another justification for the normalization stems from the variability of the origin-destination (O-
D) pairs in the dataset with respect to their different lengths.

Eight different route characteristics attributes were examined, partially described as follows:

Normalized Route Length

The normalized route length is the ratio between the length of route i, Lod
i to the maximum route

length max
(
Lod

)
, in the dataset.

Route Length =
Lod
i

max (Lod)
(1)

Normalized Route Directness

Route directness is the ratio between the route length Lod
i to the Euclidean distance between the

origin and the destination ∥o− d∥ for each trip. The lowest possible value for the Route directness
is 1. Public transport routes with a relatively high route directness ratio indicate more curvature
to other alternatives or even other modes.
The normalized route directness is obtained by dividing each route directness to the maximum
value in the dataset.

Route Directness =
Lod
i

∥o− d∥
/max

(
Lod

∥o− d∥

)
(2)

Normalized Route Frequency

The route frequency normalized to the highest frequency in the dataset. The frequency value
considered is the access frequency at the origin stop.

Route Frequency =
Frequencyod

i

max
(
Frequencyod

) (3)

Additional normalized route characteristics included in the model was Normalized Route number
of transfers, Normalized Route transfer distance and Normalized Route access/egress distance.

Additional characteristics that were examined included station capacity at the origin and dif-
ferent combinations of the walking distance attributes. However, these characteristics were not
significant in the clustering process and therefore were excluded in the model estimation process.

Model specification and estimation

For simplicity, this paper compares two simple model forms, the Multinomial Logit (MNL) and the
Path Size Logit (PSL) models. Model estimation was performed using Pandas Biogeme (Bierlaire,
2003).

3 Results and discussion

Choice Set Generation

Figure 1 shows an example of the choice set generation for a single O-D pair. the left-hand side
of the figure corresponds to the pathfinder algorithm with a fixed set of parameters. The right-
hand side of the figure corresponds to the pathfinder algorithm with the combination of different
parameters set as indicated in the methodology section. The results show that when combining
routes obtained from different parameter sets, we enriched a higher number of alternatives, along
with the capture of the chosen alternative (e.g., the map-matched route) within the generated
choice set.

3



Figure 1: Choice set generation example.

The overlap percentage (Bekhor et al., 2006) of one alternative compared to the map-matched
route is defined in the following equation:

Overlapj =

∑
a∈Γj

la

Li
, (4)

Where
∑

a∈Γj
la is the sum of all common links length between the generated alternative j and

the chosen alternative, and Li is the total length of the chosen alternative.

In the example presented in Figure 1 the overlap percentage of the simulation method is higher
than the overlap percentage received from the deterministic choice set generation.
Table 2 shows the overlap rates of the generated choice sets obtained from the combined scenarios
results, for threshold values of 70%, 80%, 90% and 100%. The 100% overlap rate means that the
real chosen path was fully captured by the generated choice set for the O-D pair. This framework
was discussed and implemented on private cars by Bekhor et al. (2006), in which 80% overlap
threshold is a sufficient indication of the chosen route for private cars. However, considering the
Israeli relatively sparse public transport network, with GPS trajectories from the users’ devices
alone, we have decided to use a threshold of 70% for the identification of the chosen alternative
from the generated choice set, reaching to value of 57% choice sets over this rate. A possible
explanation for the low coverage may be related to the network resolution; this paper uses the full
highway network, as opposed to previous papers that used planning networks containing only the
main network streets.

Table 2: Overlap rate results

Scenario Overlap rate for coverage
70% 80% 90% 100%

Basic penalty 49.4% 40.9% 29.0% 11.7%

Transfers sensitivity penalty 49.6% 40.9% 28.1% 11.5%

Basic penalty 50.2% 42.4% 30.7% 12.5%

Combined set from all 57.3% 45.6% 32.9% 13.3%
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Route Characteristics Attributes Clustering

Using the normalized route characteristics attributes as the clustering features, we run the Knn
algorithm with a different number of clusters k, from 2 to 15, aiming to find the optimal value of
k that maximizes the Silhouette score (Rousseeuw, 1987) while observing a plateau in the within-
cluster sum of squares (WCSS) score (Thorndike, 1953). Figure 2 shows that the selection of k =
4 can be appropriate for our sample.

Figure 2: silhouette and WCSS scores over number of clusters.

Table 3 presents general statistics of the normalized route characteristics attributes used as features
in the clustering algorithm. The relatively low average value for the number of transfers indicates
that the passengers prefer trips without transfers. The maximum number of transfers found in the
dataset was 2 transfers, this can be explained by the fact that all observations in this dataset are
related to bus trips.

Table 3: Route characteristics attributes – general statistics

Route characteristics Min Max Average Standard deviation

Route length 0.007 1.00 0.095 0.125
Route frequency 0.111 1.00 0.481 0.229
Number of transfers 0.000 1.00 0.149 0.235
Access/Egress walking distance 0.004 1.00 0.068 0.050
Transfer walking distance 0.000 1.00 0.017 0.056
Route directness 0.278 1.00 0.306 0.052

Feature Importance

One of the most important aspects of ML algorithms implementation is the ability to explain the
results. Feature importance is an explainability tool for the clustering process, it is used to under-
stand which feature contributes the most to the formation and differentiation of the clusters. By
understanding the importance of these features for each cluster, we will gain prior knowledge and
use it in the route choice model estimation phase. Figure 3 shows the feature importance results
for the 4 clusters created using the Knn algorithm (Fix & Hodges, 1989).

The results of the four graphs in Figure 3 show that the frequency feature was the most important
predictor for cluster membership. While, for the rest of the features, the decision rule is less
consistent and changes from one cluster to the others. Yet, additional important features for the
clustering were the route directness and the number of transfers. Clusters 1 and 2 represent direct
trips without transfers, while the difference between them lies in the walking distance of access
and egress. This difference can be interpreted as an indication of the passenger’s willingness to
walk to the station as a function of the trip length. Cluster 3 represents longer trips with transfers
and less frequent routes. it contains mainly the inter-urban trips in the dataset. In this aspect,
frequency is important because longer trips with transfers tend to be less appealing to the user.
Therefore, high frequency in these alternatives can be a decision factor for choosing this category
as we can see in cluster 4.
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Figure 3: Feature importance for each cluster.

Model Estimation

In this paper, we estimated MNL and PSL public transport route choice models with the fea-
tures extracted from the clustering analysis as explanatory variables. The estimation results are
presented in Table 4 with the coefficient values and the matching p-values for them.

Table 4: model estimation results

MNL PSL
LL(0) = -1155.938 LL(0) = -1155.938
LL(β) = −865.912 LL(β) = −846.154
Rho-square: 0.217 Rho-square: 0.235
Rho-square-bar: 0.211 Rho-square-bar: 0.228

Coefficient value p-value value p-value

Route directness -8.98 0.00 -10.4 0.00
Route length -4.55 0.01 -3.88 0.03
Route frequency 5.45 0.00 5.46 0.00
Number of transfers -2.42 0.00 -1.92 0.00
Access Egress walking distance -9.76 0.00 - 8.41 0.00
Transfer walking distance -0.87 0.12 -0.78 0.19
PSC 5.66 0.00

The results demonstrated significant p-values for all coefficients except for the transfer walking
distance for both models. Our interpretation is that there might not have been enough variabil-
ity in the dataset concerning this aspect, as discussed earlier regarding the number of transfers
characteristic statistics.
The addition of the PSC coefficient in the PSL model enhanced the overall model; Note that this
coefficient is positive, which indicates that passengers’ prefer routes with common links. This
contrasts with results obtained for private car route choice (Bovy et al., 2008). Unlike private car
mode, in which disjoint routes are more clearly perceived, in public transport, joint routes can be
an indicator of a corridor service, with additional opportunities and more accessibility.
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4 Conclusions

This study examines the influence of public transport’s travel characteristics on route choice mod-
elling. The approach of the study was to use a comprehensive household travel survey that included
route choice data collected from GPS devices. The dataset created included a sufficient number of
observations for clustering analysis and model estimation.
To maximize the utilization of the map-matched observations, a high overlap percentage is required.
The suggested methodology was able to demonstrate that conventional methods have the potential
to cover the observed alternatives. Yet, further research is necessary to reach higher overlap results.
The clustering step enabled the identification of important features that were subsequently applied
in the model estimation step. The use of normalized explanatory variables in route choice models is
not a common issue, and this paper expanded the method proposed by Yao and Bekhor (2020) by
applying it on public transport characteristics. The variable normalization is essential for obtaining
significant clustering results.
The model estimation results show that the proposed methodology can reach significant parameter
estimates respectively to the data. In addition, the feature importance obtained the clustering
step provided new insights into the passengers’ behavioral patterns, and enriched the route choice
model results from the behavioral understanding aspect.
In this paper we estimated simple MNL and PSL choice models. The variables used for estimation
were significant and in line with the feature importance results. The proposed methodology can
accommodate other complex model forms that may be suitable for the public transport dataset.
Further research will investigate additional model forms and include personal explanatory variables
from the household survey.
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