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SHORT SUMMARY 

This study develops a user departure time equilibrium model in a many-to-many transit network 
and evaluates a revenue-neutral fare incentive scheme where passengers incur a surcharge during 
the peak hour and obtain a reward during off-peak hours. In the user equilibrium model, 
passengers’ departure time choices are based on the generalized trip costs including crowding 
costs, queuing costs, schedule delay costs, in-vehicle costs and uniform fare costs. Equilibrium 
conditions are derived where passengers with the same OD incur identical equilibrium costs. A 
sequential algorithm is proposed to solve the user equilibrium. A bi-level optimization model is 
further developed to optimize the proposed incentive strategy based on the network equilibrium 
model. Case studies are conducted with Copenhagen M2 metro line where results yield the 
distributions of passengers with different OD in each service run and indicate the reduction of 
total equilibrium costs with the incentive strategies. We also found that upstream station 
passengers may incur higher trip costs with the incentive strategies as they have priority to occupy 
the vehicle space and thus pricing strategies imposes constraints to their choices. The proposed 
model and incentive schemes can provide tractable references for users and transit authorities in 
managing demand and relieving commuting congestions.  
 
Keywords: Departure time equilibrium, many-to-many network, commuting, peak-hour 
congestion, incentives 

1. INTRODUCTION 

Urban rail transit systems have been developed in most large cities worldwide to generate travel 
activities and connect communities. Urban rail transit systems encompass a range of mass transit 
systems including commuter rail, rapid transit, light rail, metro, and streetcar that operate on sep-
arate systems. Traveling by rail transit in many metropolitan areas is a primary means of economic 
travel option for passengers and is an environmentally friendly travel form delivered by the transit 
agencies and government. 
 
With the vast amounts of passengers and large infrastructure, introducing new expansions, strat-
egies and operations in urban rail transit often involves substantial development costs and time. 
It is vital to develop decision-support approaches to evaluate tentative planning, operations, and 
network constructions for optimal decision-making process and resource facilitations. Pioneering 
studies have been done to develop analytical and mathematical models in general transit network 
designs comprising trip assignment, routing, and scheduling. Hasselstrom (1982) developed 
three-stage transit planning involving assignment models, route selections and frequency optimi-
zation. A system approach was proposed by Ceder and Wilson (1986) for transit network design 
and redesign by solving optimization problems. Chua (1984) analyzed quantitative and qualitative 
approaches to the planning of transit routes and frequencies in bus systems.  
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A number of studies have also elaborated the interactions between passengers, transit capacity 
and networks for planning in terms of congestion and crowding costs. Furth and Nielson (1981) 
considered the travel times and waiting times to optimize the frequencies for a given route struc-
ture. Szeto and Jiang (2014) developed a bi-level modeling approach to capture the in-vehicle 
congestion and passenger transfer behaviors in transit network design and planning. Niu and Zhou 
(2013) captured the peak hour congestions and optimized the urban rail timetable in oversaturated 
condition. Högdahl et al. (2019) combined simulation and optimization approaches to minimize 
railway travel time and delays. 
 
In line with the peak congestion and demand management, transit agencies and governments have 
a growing need to capture the interim dynamics of the behaviors and operations and develop 
temporal policy interventions and time-dependent operations such as pricing strategies. Several 
studies conduct empirical analyses to investigate the effect of time-based differential fare schemes 
in practice (Yang and Lim, 2018; Zou et al., 2019; Anupriya et al., 2020; Wang et al., 2020a, 
2020b). For instance, to smooth public transit demand, a free off-peak trip was provided by the 
“Travel Early, Travel Free” project in Singapore. Yang and Lim (2018) find this project has ef-
fectively encouraged commuters to shift their travel time to off-peak hours, and its effect persisted 
seven months after the financial incentives’ discontinuation. Similarly, a 25 percent fare incentive 
for pre-peak commuters was offered by “the Early Bird Discount” in Hong Kong to address the 
overcrowding problems in public transport. Anupriya et al. (2020) evaluate the causal impact of 
this differential pricing on the trip scheduling of regular commuters based on difference-in-dif-
ference methods. The results indicated that the mean arrival time of regular commuters decreased 
due to the implementation of “the Early Bird Discount” but not at significant level. Hence the 
results also suggested that a 25 percent fare discount may not be sufficient to incentivize com-
muters to change their travel scheduling. These results reveal that the effective and efficient de-
sign of time-based differential fares is essential to ensure its peak avoidance effects.   
 
Existing studies mainly focused on qualitative analyses and data-oriented to evaluate the post-
impacts of pricing strategies. Transit agencies and governments are facing challenges to assess 
the real-time passenger flows in vehicles, platforms, and stations under various pricing and oper-
ations to ensure an informed decision-making process. Moreover, different from other systems 
such as road traffic, urban rail transit systems with human interactions exhibit crowding effects 
where queuing and congestion increase nonlinearly with the size of the agents and the scale of the 
interactions.  
 
To this end, this study developed a novel user departure time choice model considering a transit 
network with many-to-many origin-destination pairs, and proposed a surcharge-reward scheme 
to tackle the peak hour congestion and reduce transit crowding. The rest of the paper is organized 
as follows. Section 2 describes the problem settings of a transit network and passengers’ general-
ized trip costs. Section 3 devises the user equilibrium conditions and solving algorithms. Section 
4 introduces the concepts and designs of the surcharge-reward scheme. Section 5 conducts case 
studies with Copenhagen metro system to validate the proposed model and pricing schemes.  

2. PROBLEM SETTINGS 

Consider a mass transit network (many-to-many network) with multiple lines and stations, as 
shown in Figure 1. A service run departs from the furthest station 𝑆𝑇! and stops by 𝑆𝑇"…𝑆𝑇# 
stations to the last station D. Each passenger has a pair of origin station 𝑘 and destination station 
𝑠. The demand for each origin-destination (OD) pair is denoted by 𝑁#$, 𝑘 = 1,2, … , 𝐾, 𝑟 > 𝑘. The 
in-vehicle time between station 𝑘 and station 𝑘 + 1 is denoted by 𝑑#. 
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Figure 1. The many-to-many transit system 

In this case, commuters with the same OD pair 𝑘 − 𝑟	who takes a service run labeled as 𝑚 at 

station 𝑆𝑇# encounter the generalized costs as below: 

𝑇𝐶#$4𝑡%# 6 = 𝛿#$4𝑡%# 6 + 𝑞#4𝑡%# 6 + 𝑐#$4𝑡%# 6 + 𝑝 + 𝜑#$ , 
𝑘 = 1,2, … , 𝐾 − 1, 𝑠 > 𝑘,𝑚 = 1,2, … ,𝑀 

(1) 

 
where 𝑡%#  denotes the departure time of service run 𝑚 at station 𝑘, 𝑝# is the fare cost at station 𝑘, 
𝑞4𝑡%# 6 is the queuing cost at platform if the service run is full, 𝑐4𝑡%# 6 is a crowding cost,  𝜑# is 
the in-vehicle time cost, and 𝛿4𝑡%# 6 is a schedule delay cost if they arrive at work earlier or late. 
 
The crowding costs is expressed as 
 

𝑐#$4𝑡%# 6 = = 𝑔?= = 𝑛%&'
(

')*+!
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$,!

*)#

, 𝑘 = 1,2, …𝐾 − 1, 𝑟 > 𝑘,𝑚 = 1,2, … ,𝑀 (2) 

 

where ∆𝑛%&  is the number of additional in-vehicle commuters from downwards stations starting 

from station 𝑘 taking service run 𝑚.  

The in-vehicle time cost is expressed as 

𝜑#$ = 𝛼 ∙ (𝑑# + 𝑑#+! +⋯+ 𝑑$,!), 𝑘 = 1,2, …𝐾 − 1, 𝑟 > 𝑘 (3) 

3. DEPARTURE TIME EQUILIBRIUM IN MANY-TO-MANY NETWORK 

3.1. Network Equilibrium Conditions 
 
At equilibrium, commuters with the same origin-destination supposed to have identical equilib-
rium cost. Meanwhile, commuters with the same origin-destination incur constant fare costs and 
in-vehicle time costs which have no effect on the equilibrium departure time distribution and are 
thus ignored. 
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The equilibrium departure time model in transit network can be mathematically expressed as 
follows: 
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                  subject to 

 = 𝑛%#$
9
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= 𝑁#$ , 𝑘 = 1,2, … , 𝐾 (5) 

 ! ! 𝑛!𝑘𝑟
𝑟

𝑙=𝑘+1

&

#$%

≤ S,𝑚 = 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 = 1, 𝑟 > 𝑘	 (6) 

 𝑛%#$ ≥ 0,𝑚 = 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 (7) 

The first term of the objective function (4) is the integral of crowding cost function which has no 
economic interpretation. The second term 𝛿(𝑚) is the aggregate schedule delay cost and 𝑇# is 
the in-vehicle time of commuters in the transit system respectively. The third term is the transit 
revenue. Constraint (5) is the demand constraint for each station and constraint (6) represents the 
rigid capacity. The commuter departure time equilibrium is given by the first order condition of 
the problem (4):  

 𝑛%#$ ?=𝑔?= = 𝑛𝑚&'
$

'):+!
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$,!
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+ 𝛿𝑘𝑟(𝑡𝑚𝑘 ) + 𝑞%#$ − 𝑣#$A = 0 (8) 
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A = 0 (10) 

 𝑞%#$ ≥ 0 (11) 
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 = 𝑛%#$
9
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= 𝑁#$ (13) 

 𝑛%#$ ≥ 0 (14) 

where 𝑞%#$  and 𝑣#$  are the Lagrange multipliers. 𝑞%#$  represents the equilibrium queuing time 
costs with origin station 𝑆𝑇# and destination station 𝑆𝑇. in the service run departing at 𝑡%# . 𝑣#$ 
represents the equilibrium trip costs of commuters with the origin-destination pair 𝑆𝑇# and 𝑆𝑇$. 
 
Eqs. (8) and (9) state the equilibrium condition that at station 𝑆𝑇# , if the service run is non-empty, 
passengers’ generalized trip costs are the same as the equilibrium trip costs and if the service run 
is empty, then the generalized trip costs are no less than the equilibrium trip costs. The equilibrium 
condition can be mathematically expressed as: 

 N𝑣%
#$ = 𝑣#$ , 𝑖𝑓	𝑛%#$ > 0
𝑣%#$ ≥ 𝑣#$ , 𝑖𝑓	𝑛%#$ = 0

, 	= 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 = 1, 𝑟 > 𝑘	  (15) 
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Eqs. (10) - (11)indicate the equilibrium queuing condition by the rigid capacity constraint. Pas-
sengers incur the queuing time costs if the service run is saturated. The queuing condition can be 
mathematically expressed as: 

 

⎩
⎪
⎨

⎪
⎧𝑞%#$ = 0, 𝑖𝑓	= = 𝑛𝑚#$

$

')#+!

𝑘

𝑧=1
< 𝑆

𝑞%#$ ≥ 0, 𝑖𝑓	= = 𝑛𝑚#$
$

')#+!

𝑘

𝑧=1

= 𝑆

	, 	𝑘 = 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 = 1, 𝑟 > 𝑘 (16) 

Therefore, passengers can board the service run immediately if the arriving service run is unsatu-
rated or have to wait for the next available service runs at the station if the arriving service run is 
saturated. Eqs. (12) and (13) are demand and supply constraints.  
The optimization model (4) - (7) is to be solved for departure time distribution equilibrium in a 
many-to-many network. It should be noted that the simultaneous solution of equilibrium for all 
stations may not be unique. However, for each station 𝑆𝑇#, the commuter departure time equilib-
rium model has a convex function and a convex set of constraints given fixed variables of other 
stations, hence a unique equilibrium solution can be obtained for each station. 
  
An algorithm is proposed to solve the departure time equilibrium model sequentially for each 
station with unique solutions. 
 

Algorithm: Compute the departure time equilibrium in a many-to-one network 
Step 1: Initialization. Set 𝑙 = 1 as iteration index. For each station and service run, set an initial 
boarding flow 𝐧%

;;(') = {1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑘 ≤ 𝐾}  
Step 2: Update of boarding flow in stations 

2.1 Initialization. Set 𝑘 = 1 
2.2 Set boarding flow in station 𝑆𝑇# as variable and fixed the boarding flow for all the 
other stations by 𝐧#$(') = Z𝐧%

!$,('+!), … , 𝐧%
(#,!)$,('+!), 𝐧%

(#+!)$,('+!), … , 𝐧%
(?,(')|1 ≤

𝑚 ≤ 𝑀, 1 ≤ 𝑘 ≤ 𝐾, 𝑟 > 𝑘\ , Solve the minimization problem (4) - (7) and obtain the 
equilibrium boarding flow of each OD pair 𝑘 − 𝑟 at station 𝑆𝑇#, denoted by 𝐧%#$  
2.3 If 𝑘 = 𝐾, then stop and go to step 3. Otherwise, set 𝑘 = 𝑘 + 1 and return to step 
2.2. 

Step 3: Update boarding flow 𝐧#$,('+!) = Z𝐧%
#$,('+!)|1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑘 ≤ 𝐾, 𝑟 > 𝑘\   and go 

to step 4. 
Step 4: Iteration stops if ∑ ∑ ∑ ^𝑛%

#$,('+!) − 𝑛%
#$,(')^ < 𝜀9

%)!
(
$)#

(,!
#)!   (𝜀 = 0.1here), otherwise, 

set 𝑙 = 𝑙 + 1 and  𝐧('+!) = Z(𝐧('+!) + 𝐧('))/2\, and return to step 2 

4. OPTIMIZATION OF INCENTIVES TO MANAGE COMMUTING  

4.1. The surcharge-reward scheme  

The surcharge-reward scheme is an individual-based incentive strategy to smooth out the peak 
hour flow in the transport systems. The concept of the surcharge-reward scheme is to redesign a 
fare strategy which split the peak period into one central period and two shoulder periods (Tang 
et al., 2020; Yang & Tang, 2018). Passengers incur a surcharge ∆𝑠 in the central period which 
will be all refunded to their personal account. And they can use a reward ∆𝑟 from the account 
balance if they travel in the two shoulder periods. Passengers are not allowed to use the reward if 
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they do not have sufficient account balance. The control ratio is defined as 𝜆 =
(Δ𝑠 Δ𝑟⁄ ) (1 + Δ𝑠 Δ𝑟⁄ )⁄ = ∆𝑠 (∆𝑠 + ∆𝑟)⁄ , which can be regarded as the ratio of number of trips 
with rewards to the total number of trips made by one passenger.  
 
A design criteria is introduced for the incentive spirit of the surcharge-reward scheme such that 
for each station, the equilibrium trip costs with a reward are no greater than those with a surcharge. 
Therefore, the surcharge-reward scheme is able to encourage passengers to shift their departure 
times to shoulder periods if they have the rewards. The design criteria is expressed mathematically 
as: 

 𝑣?@A#$ ≤ 𝑣?@A#$ + ∆𝑠 𝜆⁄ , 𝑘 = 1,2, … , 𝐾, 𝑟 > 𝑘 (17) 

where 𝑣?@A#$  represents the equilibrium trip costs in reward fare intervals (namely, the shoulder 
periods) for each OD pair 𝑘 − 𝑟 at station 𝑆𝑇# and 𝑣?@A#$  represents the equilibrium trip costs in 
the surcharge fare intervals (namely, the central period) at station 𝑆𝑇#. 
For practicality and simplicity, an identical surcharge-reward scheme design is considered in all 
stations. Therefore, the above design criteria can be transferred to 

 ∆𝑠 𝜆⁄ ≥ max4𝑣?@A#$ − 𝑣?@A#$ 6 , 𝑘 = 1,2, … , 𝐾, 𝑟 > 𝑘 (18) 

The design mechanism of the surcharge-reward scheme indicates that passengers with reward will 
travel in shoulder periods while passengers without reward will travel in the central periods. 
Hence the SRS will introduce segregated travel patterns during the peak period as shown in Figure 
2.  

In a transport system, it is therefore important to optimize the surcharge-reward scheme to reduce 
the congestion including the queuing and crowding costs. The implementation of the surcharge-
reward scheme focuses on the amount of the surcharges, the control ratio and how to split the 
peak period to central period and shoulder periods. Based on this, we introduce four decision 
variables which are 

• The surcharge, ∆𝑠 

• The control ratio, 𝜆 

• The index of the starting service run in central period, 𝑒, 1 ≤ 𝑒 ≤ 𝑀 

• The number of service runs in central period, 𝑙, 1 ≤ 𝑙 ≤ 𝑀 − 𝑒 

While the surcharge and the control ratio are continuous variables, the index of starting service 
run and the number of service runs are integer variables. We further established a bi-level opti-
mization model to optimize the performance of the surcharge-reward scheme in a many-to-many 
network. The optimization is formulated as follows: 
 
Upper level:  

 min
B,C,',D!"#,D$"#

𝑇𝐸𝐶 == = l𝑣E@A#$ ∙ (1 − 𝜆) ∙ 𝑁#$ + 𝑣?@A#$ ∙ 𝜆 ∙ 𝑁#$m
(

$)#+!

(,!

#)!

 (19) 

 subject to 

 
∆𝑠
𝜆
≥ maxn𝑣?@A#$ − 𝑣E@A#$ o , 𝑘 = 1,2, … , 𝐾, 𝑟 > 𝑘 (20) 

 1 ≤ 𝑒 ≤ 𝑀, 𝑒 ∈ ℤ+ (21) 

 1 ≤ 𝑙 ≤ 𝑀 − 𝑒, 𝑙 ∈ ℤ+ (22) 

 ∆𝑠 ≥ 0 (23) 
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 𝜆 ≥ 0 (24) 

Lower level: 
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𝐤𝐫 ,𝐧𝐒𝐅𝐈

𝐤𝐫
𝑇𝐸𝐶(𝐧) = = ?= 𝐺?= = 𝑛𝑚,𝑅𝐹𝐼&'

$

')*+!

𝑤

𝑧=1
A

9

%)!

A𝑑*

$,!

*)#

++=?= = 𝑛𝑚,𝑅𝐹𝐼&'
$

')*+!

𝑤

𝑧=1
A 𝛿𝑘𝑟,𝑅𝐹𝐼(𝑡𝑚𝑘 )

𝑀

𝑚=1

+ = ?= 𝐺?= = 𝑛𝑚,𝑆𝐹𝐼&'
$

')*+!

𝑤

𝑧=1
A

9

%)!

A𝑑*

$,!

*)#

++=?= = 𝑛𝑚,𝑆𝐹𝐼&'
$

')*+!

𝑤

𝑧=1
A 𝛿𝑘𝑟,𝑆𝐹𝐼(𝑡𝑚𝑘 )

𝑀
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 subject to 
 

 = 𝑛%,E@A#$
9

%)!

= (1 − 𝜆)𝑁#$ , 𝑘 = 1,2, … , 𝐾 − 1, 𝑟 > 𝑘 (25) 

 ! ! 𝑛!,456𝑘𝑟
𝑟

𝑙=𝑘+1

&

#$%

≤ S,𝑚 = 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 − 1, 𝑟 > 𝑘	 (26) 

 𝑛%,E@A#$ ≥ 0,𝑚 = 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 − 1, 𝑟 > 𝑘 (27) 

 = 𝑛%,?@A#$
9

%)!

= 𝜆𝑁#$ , 𝑘 = 1,2, … , 𝐾 − 1, 𝑟 > 𝑘 (28) 

 ! ! 𝑛!,756𝑘𝑟
𝑟

𝑙=𝑘+1

&

#$%

≤ S,𝑚 = 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 − 1, 𝑟 > 𝑘	 (29) 

 𝑛%,?@A#$ ≥ 0,𝑚 = 1,2, … ,𝑀, 𝑘 = 1,2, … , 𝐾 − 1, 𝑟 > 𝑘 (30) 

 
 
The objective of the upper level model is to minimize the total equilibrium cost for all commuters 
in the system. Since the design of the surcharge-reward scheme is identical among all the stations, 
constraint (20) indicates that the difference of fare cost with SRS is set to be no less than the 
maximum difference of equilibrium cost so to incentivize commuters in all stations. The lower 
level model is to solve for departure time distribution equilibrium in a many-to-one network. The 
first and second terms in the objective function along with constraints (25) - (27) solve for the 
equilibrium in central period. Similarly, the third and the fourth terms in the objective function 
along with constraints (28) - (30) solve for the equilibrium in shoulder periods.  

5. CASE STUDY IN COPENHAGEN COMMUTER LINE  

The many-to-many case considers five stations from Vanlose station to Christianshavn station in 
the rail line M2 in the Copenhagen metro system, supposing in the morning peak period that 
travelers having the origin and destination pairs between the five stations. The OD demand matrix 
is presented in Table 5.1. The system characteristics are summarized in Table 5.2.  
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Table 5.1. OD demand matrix 
 

 Vanlose Fasanvej Norreport Kongens Nytorv Christianshavn 
Vanlose / 150 700 950 250 
Fasanvej / / 700 500 400 
Norreport / / / 1900 900 
Kongens Nytorv / / / / 1000 
Christianshavn / / / / / 

 

Table 5.2. System characteristics 

 

Station In-vehicle time be-
tween two stations 

Off peak price 
(DKK) 

Peak Price 
(DKK) 

(1) Vanlose 6 mins 29.6 37 

(2) Fasanvej 5 mins 29.6 37 

(3) Norreport 3 mins 18.8 23.5 

(4) Kongens Nytorv 2 mins 14.4 18 

(5) Christianshavn / 14.4 18 

The transit service and social factors are listed as follows: 

ℎ = 3𝑚𝑖𝑛𝑠, 𝑆 = 275, 𝑠𝑒𝑎𝑡 = 120, 𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 = 155, 𝛽 = 60
𝐷𝐾𝐾
ℎ

, 𝑟 = 60
𝐷𝐾𝐾
ℎ

, 𝑡∗

= 8: 30𝑎𝑚 

As shown in Figure 5.1 and Table 5.3, the original departure time duration is from 7:33 am to 
8:48 am, with surcharge reward scheme, the optimal surcharge interval is set from 7:00 am to 
7:39 am, the reward ratio is 0.4579, and the lower bound of the optimal surcharge varies with the 
station ranging from 11.206 DKK to 13.536 DKK. Since the equilibrium cost difference of SFI 
and RFI is different in each station, to assure that the surcharge-reward scheme is effective for all 
travelers, the lower bound of the optimal surcharge depends on the maximum difference value of 
SFI and RFI equilibrium cost among all the stations, as indicated in constraint (20).  
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Figure 5.1. Travelers departure time distribution before and after the surcharge fare scheme in a 

many-to-many network 
 
Table 5.3. The optimal solution 
 

Boarding Stations Optimal re-
ward ratio 

Optimal surcharge 
interval 

Lower bound of the 
optimal surcharge Rewards 

Vanlose 

0.4579 8:00 -8:39 am 

13.536 31.240 
Fasanvej 13.015 30.627 
Norreport 11.206 29.815 
Kongens Nytorv 13.188 27.594 
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Results indicate that the optimal surcharge-reward scheme overall reduces the system equilibrium 
costs by 11.58%. The performance also varies with the stations as shown in Table 4. For the first 
upstream station Vanlose, the optimal design results in higher costs. This is because commuters 
in upstream stations have priority to occupy the vehicle space. Implementing the surcharge-re-
ward scheme constrained their free choices of service runs. Hence in the many-to-many network 
case, a cost reduction with the surcharge-reward scheme in one station cannot guarantee the same 
property in the other stations, although the overall total equilibrium costs are minimized. The 
results also imply the implementation of reward scheme that considers reduction of equilibrium 
costs for each station.  

Table 5.4. Performance of surcharge-reward scheme  
 

Stations Total equilibrium costs reduction 

Vanlose 7.33% 
Fasanvej -5.33% 
Norreport -20.67% 

Kongens Nytorv -27.63% 
Total -11.58% 

6. CONCLUSIONS 

This study develops a network-wide user departure time choice model and incentive strategy op-
timization to relieve commuting congestion in a transit network considering many-to-many 
origin-destination patterns. The case study is conducted considering a subset of the Copenhagen 
M2 metro line which is the most congested commuting metro line in Copenhagen metropolitan 
area. The user equilibrium results indicate that downstream passengers are mostly boarding the 
service runs at the shoulder of the peak period depending on the availability of vehicle capacity. 
The incentive strategy model also yields the reduction of the total equilibrium costs in the system 
yet reveals the increase of the trip costs in the upstream stations. 
 
The present study can provide tractable information and guidance for transit authorities and users 
to quantify the time-varying crowding, queuing and trip costs in the transit system. The proposed 
solution algorithms also provide practical applications for the implementation of large-scale net-
works. There exist limitations of the study where we consider the homogeneity of passengers. 
Future research will explore the impacts of heterogeneity on passengers’ departure time choices 
and incentive strategies performances as well as include the full M2 line.  
 
Our study has also opened potential avenues for further research such as the integration of large-
scale networks, the differentiated incentives for each station and the optimizations of the transit 
operations. One may also take into account commuter heterogeneity in terms of preferred arrival 
time in each station (commute and early/late arrival). 
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