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Short summary

In the vision of wide adoption of autonomous vehicles (AVs), this paper proposes a dynamic traffic
routing algorithm in the framework of data-driven predictive control (DeePC) for traffic congestion
mitigation. Different from existing model-based approaches, DeePC does not require a parametric
model to describe the traffic dynamics but directly predicts the network throughput given the route
assignment based on historical observations. Compared to learning-based methods, DeePC is also
more flexible in incorporating additional constraints. Yet, two challenges emerge when applying
DeePC to dynamic traffic routing. First, DeePC is designed for linear time-invariant systems,
whereas the behaviors of traffic networks are highly nonlinear. To address system nonlinearity, we
adopt a relaxed formulation of DeePC and propose customized data collection strategies. Secondly,
DeePC can hardly be centrally solved on large networks due to the great number of feasible
routes and flow conservation constraints. To tackle this scalability issue, we develop a distributed
optimization algorithm that decomposes the original DeePC problem into local problems and solves
them in a coordinative way. Our numerical experiments on both small and medium-sized networks
demonstrate the performance of DeePC in optimizing the network throughput and reducing traffic
congestion. Further, DeePC archives reasonable fairness and shows a higher robustness towards
the prediction error of traffic demand, which implies great potential in real practice.
Keywords: autonomous vehicles, data-driven control, dynamic traffic routing, model predictive
control, traffic control

1 Introduction

Large cities around the world have long been suffering from serious traffic congestion and its
consequent social costs (INRIX, 2020). In the meanwhile, autonomous-driving technologies have
developed rapidly in recent years. Besides enhancing convenience, comfort, and safety in individual
mobility, autonomous vehicles (AVs) are also believed to create unprecedented opportunities for
urban traffic control and management (Li et al., 2023). In particular, the full controllability of
AVs can be utilized at different levels. At the micro level, the car-following and lane-changing
behaviors of AVs can be optimized to create platooning and achieve speed harmonization (Gong
& Du, 2018; Malikopoulos et al., 2018). At the macro level, trajectories and routes of AVs can
be centrally controlled to improve traffic throughput, reduce congestion, and even induce more
desirable behaviors of human drivers (Lu et al., 2019; Zhang & Nie, 2018).
Motivated by the foreseeable adaptation of AVs, this study investigates network-level vehicle route
control for traffic mitigation, whose potential has been demonstrated in several recent studies
using static traffic assignment models (e.g., Zhang & Nie, 2018; Chen et al., 2020) and day-to-day
dynamics (e.g., Guo et al., 2022). However, the route control in real time is rather complicated
because, instead of the shortest path myopically, it has to determine the route assignment such that
the total network throughput is maximized. To bypass such difficulty, some studies have turned
to learning-based approaches (e.g., Lazar et al., 2021; Toghi et al., 2022). While learning-based
approaches show promising performance, they are often computationally expensive and hard to
generalize among use cases. Besides, it still remains challenging for existing learning algorithms to
incorporate non-trivial constraints (Malikopoulos et al., 2018).
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In contrast to previous works, this study tackles the dynamic routing problem via model predictive
control (MPC). The essence of MPC is to control a dynamic process with a predictive model
with a finite rolling horizon Rawlings (2000); Kwon & Han (2005). At each time step, MPC
solves an optimal control problem over the next horizon, where the future system states and
outputs are estimated by the predicted model using measurements of the current state. Then, the
controller employs one or several steps in the solution, moves to the next step, and repeats the
same process. In this study, we adopt a data-driven MPC framework named data-enabled predictive
control (DeePC) Coulson et al. (2019). In short, DeePC constructs a non-parametric predictive
model using historical observations from the dynamic system. Different from the learning-based
approaches, DeePC allows one to incorporate input and output constraints and thus can easily
capture the physics in traffic networks (e.g., flow conservation). Although DeePC is developed for
deterministic linear time-invariant (LTI) systems, it shows satisfactory performance and robustness
in multiple nonlinear and stochastic systems (Elokda et al., 2021; Huang et al., 2019, 2023). Its
application in transportation, however, is still rare and mostly limited at the vehicle level (Wang et
al., 2023), whereas a recent study has applied DeePC for regional ride-hailing vehicle rebalancing
(Zhu et al., 2023). To the best of our knowledge, this is the first study that applies DeePC in route
control at the network level.

2 Methodology

Consider a pure AV environment where all vehicles’ routes to their destination are centrally deter-
mined upon their entries into the road network. Let W denote the set of origin-destination (OD)
pairs with m = |W|. For each OD pair w ∈ W, we denote Pw as its path set and P := ∪w∈WPw

as the network path set with p = |P|. To describe the relationship between paths and OD pairs,
we define a mapping matrix M ∈ {0, 1}p×m such that Mij = 1 if path j connects OD pair i and
zero otherwise. To describe the network traffic as a discrete-time dynamic system, we discretize
the study horizon into time steps with an equal interval. Accordingly, the demand flow entering
the network at each time step t is denoted by dt ∈ Rm

≥0 and the control input is given by the route
assignment vector ut ∈ Rp

≥0 that satisfies the flow conservation constraint

Mut = dt, ∀t. (1)

Let ywt ∈ R≥0 denote the number of vehicles that travel between OD pair w arriving at their
destination at each time t. Then, the network throughput is given by yt =

∑
w∈W ywt , which is

also considered as the control output in this study.

Construction of Hankel matrix

The key component of DeePC is the Hankel matrix, which stores all the information about the
system dynamics. Let D = {ud, yd}Dd=1 represent a long trajectory of control inputs and outputs
collected from the system and H be the predictive horizon in the optimal problem at each time
step. The Handel matrix defined on data D and trajectory length H < L < D, denoted as HL(D),
is constructed as follows:

HL(D) :=



u1 u2 · · · uD−L+1

u2 u3 · · · uD−L+2

...
...

. . .
...

uL−H uL−H+1 · · · uD−H

y1 y2 · · · yD−L+1

y2 y3 · · · yD−L+2

...
...

. . .
...

yL−H yL−H+1 · · · yD−H

uL−H+1 uL−H+2 · · · uD−H+1

...
...

. . .
...

uL uL+1 · · · uD

yL−H+1 yL−H+2 · · · yD−H+1

...
...

. . .
...

yL yL+1 · · · yD



=


UP

YP

UF

YF

 , (2)
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where UP ∈ RpHini×Hc , YP ∈ RmHini×Hc , UF ∈ RpH×Hc , YF ∈ RmH×Hc represent four blocks in
the Hankel matrix with Hini = L − H as the observation horizon and Hc = D − L + 1 as the
column number.
As per the Fundamental Lemma in Willems et al. (2005), if D is collected from a controllable LTI
system and the control input {ud}Dd=1 is persistently exciting of order L, then any trajectory of the
dynamic system (uinit, yinit, u, y) satisfies

UP

YP

UF

YF

 g =


uini

yini

u

y

 (3)

for some g ∈ RHc . The condition of persistent excitement is later shown to hold when the rank of
the Hankel matrix is sufficiently large, i.e., rank(H) ≥ mL+n, where n is the order of the dynamic
system (Markovsky & Dörfler, 2022).

Centralized DeePC

With the Hankel matrix, we are now ready to present the optimal control problem in DeePC at
each time step t as follows:

min
g,u,σ

−
H−1∑
k=0

yk|t + λg||g||22 + λy||σ||22 (4a)

s.t.


UP

YP

UF

YF

 g =


uini

yini

u

y

+


0

σ

0

0

 , (4b)

Muk|t = dk|t, ∀k, (4c)
uk|t ≥ 0, ∀k, (4d)
yk|t ≥ 0, ∀k. (4e)

In Problem (4), the subscript k|t denotes the k-th time step after t, σ is introduced to capture the
nonlinearity in system dynamics and the noise in observations, λg, λσ are the parameters of the
ls-regularization on g and σ.

Distributed DeePC

The centralized DeePC can be efficiently solved for small networks. However, as the traffic network
expands, both the number of OD pairs m and the size of the path set p grow rapidly. Furthermore,
to satisfy the condition for persistency of excitation, the length of historical input and output
trajectories must also increase accordingly. These two factors together dramatically increase the
dimension of the Hankel matrix. As a result, the problem can hardly be solved centrally for
large networks with a limited computational budget. To tackle this scalability issue, we propose a
distributed algorithm by exploiting the structure of the original DeePC problem.
Note that the OD-path matrix M is arranged by OD pairs and can be decomposed based on origins
as illustrated in Fig. 1. Similarly, we can decompose the Hankel matrix with respect to each origin,
as well as other variables. Let R denote the set of origins, then, for each origin r ∈ R, we can
define a local optimal control problem as follows:

min
gr,ur,σr

−
H−1∑
k=0

yk|t,r + λg||gr||22 + λy||σr||22 (5a)

s.t.


UP,r

YP,r

UF,r

YF,r

 gr =


uinit,r

yinit,r

ur

yr

+


0

σr

0

0

 , (5b)

Mruk|t,r = dk|t,r, ∀k, (5c)
uk|t,r ≥ 0, ∀k, (5d)
yk|t,r ≥ 0, ∀k. (5e)
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Note that Problem (5) remains the same as Problem (4) except for the extra subscript r, though the
problem complexity is largely reduced thanks to the decreases in the number of decision variables
and constraints. For instance, the number of (5b) drops from (m+ p)L to (mr + pr)L, where mr

and pr are the number of OD pairs with origin r and that of path starting from r, respectively.

Figure 1: Decomposition of OD-path matrix.

By substituting ur, yr, and σr in Eq. (5a) with the system dynamics (5b), we can rewrite Problem
(5) in a more compact form as follows:

min
gr

fr(gr) = −(YF,rgr)
T1+ λg∥gr∥22 + λy∥YP,rgr − yini,r∥22 (6a)

s.t. gr ∈ Cr =


UP,rgr = uini,r,

UF,rgr ≥ 0,

YF,rgr ≥ 0,

(IH ⊗Mr)UF,rgr = dr,

(6b)

where 1 denotes the unit vector, IH denotes the identity matrix of dimension H, ⊗ represents the
Kronecker product, and dr denotes the demand vector starting from origin r over the prediction
horizon.
Note that vectors gr in all local problems not only share the same dimension Hc but also must
reach consensus to ensure the constraint Eq. (4b). Problem (4) is thus reformulated as a distributed
optimization problem:

min
{gr}r∈R

∑
r∈R

fr(gr)

s.t. gr = gr′ , ∀r, r′

gr ∈ Cr, ∀r.

(7)

Problem (7) can be solved by a semi-decentralized algorithm based on the Douglas-Rauchford
operator splitting method (Bauschke & Combettes, 2011), which is detailed in Algorithm 1.

Algorithm 1 Semi-decentralized algorithm for DeePC
Inputs: α > 0; {γi}i∈Z≥0

s.t. γi ∈ [0, 2] ∀i and
∑∞

i=0 γ
i(2− γi) = ∞.

Outputs: g∗, u∗.
Initialization: Set i = 0 and zir = 0,∀r.
Iterate until convergence:

1. Central coordination:
z̄i =

1

|R|
∑
r∈R

zir

2. Local update: for r ∈ R,

gi+1
r = arg min

gr∈Cr
fr(gr) +

1

2α
∥g − (2z̄i − zir)∥22

zi+1
r = zir + γi

(
gi+1
r − z̄i

)
Set g∗ = z̄i, u∗ = UF g

∗.
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3 Results and discussion

Simulation setup and evaluation metrics

The simulation experiments reported in this section are conducted in SUMO, where the controller
is coded in Python 3.9 using OSQP library1 and interacts with the simulation environment through
the SUMO Traffic Control Interface (TraCI)2.
The widely studied Braess and Sioux Falls (SF) networks are used to evaluate the performance of
DeePC. Specifically, the Braess network is applied for a sanity check because the optimal routing
policy is known a priori. On the other hand, the SF network is used to demonstrate centralized
and distributed DeePC for more complex traffic dynamics. Since our local workstation cannot
solve centralized DeePC on the full SF network, we also generate a cropped SF network with fewer
OD pairs (29/528) that contribute to the majority of travel demand, while the full SF network is
used to demonstrate the performance of distributed DeePC.
In all tested networks, we first specify the maximum demand for each OD pair, denoted by dmax =
{dmax,w}w∈W , and then design a time-vary ratio {ηt} to capture the traffic pattern during the day.
To replicate the fluctuations in demand, we further introduce Gaussian noise εt ∼ N (0, σ2) to the
temporal, which yields the actual demand as

dt = (ηt + εt)dmax. (8)

An example of the demand profile is given in Figure 2.

Figure 2: Example of daily demand profile (dash line represents the noise-free demand).

In all experiments, we set each time step as 15 min, the observation horizon as Hinit = 10 (2.5h)
and the prediction horizon as H = 4 (1h). Three metrics are used to assess the performance of
DeePC and compare it with other benchmark policies: (i) the number of vehicles in the network;
(ii) the daily average travel time; and (iii) the unfairness defined as the average difference between
the realized and minimum travel times. The first two are the primary indicators of system effi-
ciency, or the severity of traffic congestion, while the last one is considered an equity measure.
Mathematically, the unfairness is computed as follows:

wt =
uT
t (ct − µt)

uT
t 1

, (9)

where ct ∈ Rp is the path travel times, µt ∈ Rp is the minimum path travel times between the OD
pair corresponding to each path. Hence, the larger wt, the more serious unfairness induced by the
routing policy.

Data sampling and benchmark policies

For simple LTI systems, a random control policy is sufficient to generate input-output trajectories
that well represent the system dynamics Huang et al. (2021). However, our preliminary experiments
show that the random policy performs badly for data collection. When demand is high, random
route control often leads to serious congestion and finally yields a simulation breakdown. As
alternatives, we propose to use more reasonable routing policies to collect data. For the Braess

1https://osqp.org/docs/index.html
2https://sumo.dlr.de/docs/TraCI.html
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network, we consider the route assignment under static user equilibrium (UE) (Sheffi, 1985), while
for the Sioux Falls network, we apply both static UE and myopic routing policies. The latter
distributes vehicles based on the path travel time upon their arrival. At time t, the proportion of
vehicles on path j ∈ Pw between OD pair w is given by

ρt,j =
exp (−θct−1,j)∑

j′∈Pw
exp (−θct−1,j′)

, (10)

where θ is the dispersion parameter. These two data collection policies are essentially motivated
by real practice, where we are more likely to observe route choices between UE (e.g., commute
trips) and myopic (e.g., non-regular trips).
As benchmarks, we implement static user equilibrium (UE) and system optimum (SO) policies
on both networks, while for Sioux Falls, we further numerically solve the dynamic UE and SO
policies, referred to as “pseudo-DUE” and “pseudo-DSO” hereafter. For pseudo-DUE, we update
the route assignment fraction ρt,j on a daily basis according to the realized path travel time until
it converges. As for pseudo-DSO, the updates are guided by the marginal travel time numerically
computed between two consecutive time steps.

Main findings

Due to the space limit, we only report the main findings from the experiments as follows:

• Recovery of optimal control
Our experiments on the Braess network demonstrate the potential of DeePC in recovering the
optimal route control policy. As illustrated in Figure 3, DeePC with UE sampling approaches
the lower bound between static UE and SO in both congestion measures. Interestingly,
DeePC with random sampling performs closely to UE. This result showcases the importance
of the data sampling strategy of DeePC in a highly non-linear dynamic system.

(a) Number of running vehicles

(b) Daily average travel time

Figure 3: Performance of centralized DeePC on Braess network.

• Balance between efficiency and equity
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Our experiments of centralized DeePC on the cropped SF network further demonstrate
its efficiency. Meanwhile, the results show that DeePC also achieves satisfactory fairness.
As shown in Figure 5a, DeePC performs similarly to pseudo-DUE and pseudo-DSO and
outperforms myopic routing. The gap between all benchmark policies is however not sub-
stantial possibly due to (i) the network topology and demand profile, and (ii) pseudo-DUE
and pseudo-DSO are not solved to optimum. On the other hand, Figure 5b confirms that
pseudo-DSO induces more serious unfairness compared to pseudo-DUE, where some vehicles
suffer from much longer detours. DeePC, however, manages to retain the unfairness at a
medium level without the sudden spikes occurring in myopic routing.

(a) Number of running vehicles

(b) Unfairness

Figure 4: Performance of centralized DeePC on cropped SF network.

• Robustness towards demand prediction errors
Another advantage of DeePC verified by the simulation results is its robustness towards
inaccurate predictions of demand. Figure 5 reports the performance of DeePC and other
benchmarks under a slightly twisted demand profile ωd. As expected, myopic routing can
adapt to the demand increase because it produces route assignments based on real-time
traffic conditions. Pseudo-DSO shows reasonable robustness whereas pseudo-DUE leads to
serious congestion. Surprisingly, DeePC performs the best among all benchmarks.

• Demonstration on scalability
We finally tested the distributed DeePC on the full SF network. The original problem has
44,868 variables and 45,258 constraints. After decomposition, the size of each local problem
reduces to 30,330 variables and 870 constraints. With a mild consensus threshold, Algorithm
1 manages to terminate in 20 seconds. The results shown in Figure 6 are similar to Figure
3, where DeePC outperforms the static UE and SO policies in terms of network efficiency.
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(a) Number of running vehicles (ω = 1.1)

(b) Average travel time

Figure 5: Performance of centralized DeePC on cropped SF network with twisted demand.

(a) Number of running vehicles

(b) Daily average travel time

Figure 6: Performance of distributed DeePC on full SF network.8



4 Conclusions

This study investigated the potential of DeePC, a data-driven model predictive control approach,
for dynamic traffic routing with a vision that all vehicles are fully controllable autonomous vehicles
(AVs). Our simulation experiments on small- and medium-sized networks demonstrate promising
performances of DeePC, especially with a better-designed data sampling strategy. To address the
scalability, we reformulated the step-wise control problem in DeePC as a distribution optimiza-
tion problem and developed a distributed solution algorithm. The distributed DeePC also shows
satisfactory control performance as well as computational efficiency. Besides improving network
throughput and reducing traffic congestion, DeePC is also capable of maintaining the unfairness
at a reasonable level and shows high robustness towards inaccurate demand predictions. These
properties further strengthen the significance of DeePC in real practice.
This study opens several directions for future study. First, the original DeePC was developed for
linear systems, which is clearly not the case for traffic networks. Hence, it is worthwhile to explore
the recent extensions of DeePC for non-linear systems. Additionally, the distributed DeePC may
still not be sufficient to solve the route control problem in larger networks. A possible direction is
to develop a hierarchical control scheme with regional coordination. Last but not least, considering
the coexistence of human-driven vehicles is essential, given that the mixed traffic is likely to last
for a while before the era of full autonomy (Di & Shi, 2021).
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