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Short summary

This study simulates transit feeder services in semi-on-demand hybrid route, integrating fixed-
route efficiency with demand-responsive flexibility, operated by shared autonomous vehicles (SAVs).
Adapting the simulation framework FleetPy, we assess its performance against traditional fixed
and flexible routes on a bus route in Munich, Germany, focusing on cost and service quality. The
findings reveal the hybrid model’s potential to improve service accessibility and journey times,
contingent on the fixed-flexible route balance. It evaluates the stochastic effects on waiting and
riding times due to the on-demand portion, and the optimal settings of route form, fleet size, and
headway.
Keywords: simulation, public transport, semi-on-demand, feeder, shared autonomous vehicles

1 Introduction

Background

The emergence of shared autonomous vehicles (SAVs) presents both challenges and opportuni-
ties for enhancing public transportation networks Pinto et al. (2020); Dandl et al. (2021); Ng,
Mahmassani, et al. (2024). In particular, SAVs have been identified as potentially effective first-
mile-last-mile feeder services in low-density areas Grahn et al. (2023); Klinkhardt et al. (2023).
Scenarios characterized by directional demand, such as transit feeders, can enable more efficient
fixed-route operations compared to standard ride-hailing or ride-pooling services. Studies (e.g.,
Ng & Mahmassani, 2023; Ng, Dandl, et al., 2024) explored the application of SAVs in a semi-on-
demand hybrid route (Figure 1), which combines the economy of scale of fixed-route buses with
the flexibility of demand-responsive transit. In the fixed route area (generally higher density),
SAVs operate like a scheduled bus service; in the flexible route area, they offer on-demand pick-ups
and drop-offs akin to ride-pooling. This service minimizes journey times (including access times),
providing passengers with flexibility and schedule predictability.

Literature review

The literature on on-demand transit is extensive as previously reviewed by Ng & Mahmassani
(2023) and Ng, Dandl, et al. (2024), with comprehensive surveys by Errico et al. (2013) and
Vansteenwegen et al. (2022) on recent advances in demand-responsive systems and by Narayanan
et al. (2020) on shared autonomous vehicles.
Simulation is often used as a tool to gain insights into operational aspects of demand-responsive
services. Several transportation models have been extended in recent years to simulate both fixed-
and flexible-route services, e.g. SUMO (Armellini, 2021), MATSim (Horni et al., 2016), and Polaris
(Gurumurthy et al., 2020; Cokyasar et al., 2022). Additionally, several studies built new agent-
based simulation models for demand-responsive services, usually focusing on operational aspects
or better computational performance without traffic simulations (e.g., Alonso-Mora et al., 2017;
Fagnant & Kockelman, 2018; Dandl et al., 2019; Engelhardt et al., 2022) or with Macroscopic
Fundamental Diagrams (Alisoltani et al., 2020; Beojone & Geroliminis, 2023).
Rich et al. (2023) conducted a comparative analysis of fixed-route and demand-responsive methods
as feeder services for light rail transit, using agent-based simulation. Collectively, previous studies
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Figure 1: Illustration of fixed route, on-demand flexible route, and semi-on-demand hybrid
route as a feeder service

primarily focus on the performance of flexible-route service or on the decision to deploy either
flexible-route or fixed-route services. In contrast, this study builds on (Ng, Dandl, et al., 2024)
and simulates the hybrid route service, which represents a continuum between these two service
modes, defined by the extent of the flexible route portion.

Motivation and objective

Drawing on the analytical frameworks developed by Ng & Mahmassani (2023) and Ng, Dandl,
et al. (2024), this study aims to validate the performance of semi-on-demand hybrid route feeder
services using real-world demand data on a bus route in Munich, Germany. As the service forms
of hybrid routes span between fixed and flexible routes, the study also compares the performance
and cost across all three kinds of routes, in terms of costs (users’ and operator’s) and journey time.
With Monte Carlo simulation, confidence intervals are constructed for key metrics to understand
the result robustness and experience discrepancy among users. The costs are compared with the
theoretical formulation (Ng, Dandl, et al., 2024) to evaluate the effects of assumptions such as
ignored demand and operation variance. We also evaluate the optimal route form (and flexible
route portion for hybrid route), fleet size, and headway based on simulation results with an SAV
fleet.
In short, the contributions of this study are three-fold:

1. Empirical validation of benefits and performance of hybrid route services

2. Investigation of stochastic effects on waiting and riding times of passengers and operator’s
costs for hybrid routes

3. Exploration of hybrid route design including optimal route form, fleet size, and headway in
existing transit line cases

2 Methodology

This study employs FleetPy, an agent-based SAV simulation framework (Engelhardt et al., 2022),
to analyze the operation of a semi-on-demand hybrid route transit line. The tool is adapted to
cater to the proposed service form in public transport schedules and request handling.
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Public transport schedule setting

The key design variables of the hybrid route service include the flexible route portion xf , fleet
size s, and headway h. A loop route is assumed for a hybrid route, i.e., SAVs departing from a
terminus, calling at fixed stops, and then serving on-demand requests in the flexible route portion
before returning to scheduled fixed stops and finally the terminus. A detour factor ϕ sets the upper
bound for detours in the flexible route portion, thereby determining the scheduled fixed-route stop
times for the return trip. The original round trip time tr is therefore adjusted to t′r that includes
additional time reserved for detours in Eq. 1, where td is the journey time originally scheduled for
stops in the flexible route portion.

t′r = tr + ϕtd (1)

For a feasible schedule, sufficient vehicles must be provided to fulfill the headway and journey time
requirement after accounting for detours in Eq. 2, where tt is the turnaround time at a terminus.

s ≥ (t′r + tt)/h (2)

Afterward, the minimum feasible number of vehicles is deployed to minimize the vehicle marginal
cost.

SAV fleet simulation and control

The simulation consists of three agents: Customers (1), requesting trips from the service operator
(2) which assigns schedules to its vehicles (3) to serve the customers by moving in a street network
G = (N,E) with nodes N and edges E. A customer request ri is defined by its request time ti, its
origin oi ∈ N , and its destination di ∈ N . A schedule consists of an ordered list of stops that are
processed by the vehicle one after another. A stop s, in fixed and flexible portions, is characterized
by a location ys ∈ N , the latest start time ls, the earliest start time es, and a duration ds.
Additionally, each stop is associated with a list of boarding and alighting customers. In between
stops, vehicles v ∈ V travel in the network on the fastest route. If they arrive at the next stop s
before es, they wait until es. In the next step, they perform the boarding task associated with this
stop for a duration of ds and continue with driving to the consecutive stop afterward.
At the beginning of the simulation, each vehicle is initialized with its corresponding fixed line
schedule for the whole simulation period. Thereby, es and ls are set to the scheduled arrival
time at each fixed-route bus stop ys. During the simulation, new customers request trips in each
simulation time step of 60s. In each time step, the operator assigns requests iteratively with the
following steps:

1. If a customer request ri = (ti, oi, di) is picked up or dropped off in the fixed portion, oi or
di is shifted to oFi or dFi corresponding to the nearest bus stop of oi and di, respectively.

2. A request is assigned to the vehicle schedule by:

• adding the request to the boarding or alighting list of a stop if the corresponding
locations match; or

• inserting a new stop to pick up or drop off the request.

An insertion is feasible if and only if:

• each stop s in the schedule can be served before ls elapsed;

• each customer served by the schedule is picked up before a maximum waiting time
tW,max elapsed;

• the maximum in-vehicle travel time of each customer served by the schedule does not
exceed the shortest path time tS by a factor ϕP ; and

• at no time more than cv customers are on-board of the vehicle.

All feasible insertions for a request and each vehicle are computed by an exhaustive search,
and the schedule ψ that minimizes the objective in Eq. 3 is assigned, where γOv , γR, γS , and
γF are respectively the cost/reward coefficients for vehicle distance, traveler time, requests
satisfied, and requests served in a fixed route, and dv,ψ, ai,ψ, nSψ, and nFψ are respectively
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the distance traveled by a vehicle v, arrival time of passenger i, number of requests satisfied,
and number of requests served in a fixed route.

ρ(ψ) =
∑
v∈V

γOv dv,ψ +

NR∑
i=1

γR(ai,ψ − ti)− γSnSψ − γFnFψ (3)

If no feasible insertion is found, the customer request is rejected.

3. Repeat Steps (1)-(2) until all customer requests are processed. Then, vehicles move and
perform boarding processes according to their assigned schedules.

Cost computation

Following the cost definition by Ng, Dandl, et al. (2024), this subsection summarizes the cost
components. The user cost cUi of rider i in Eq. 4 is composed of access (walking), waiting, and
riding costs, where tAi , tWi , and tRi are the access, waiting, and riding times and γA, γW , and γR

are the cost coefficients for access, waiting, and riding times.

cUi = γAtAi + γW tWi + γRtRi (4)

The vehicle cost cOv for vehicle v consists of distance-based operating cost and vehicle marginal
cost, where dv and tVv are the distance traveled and time deployed, and γO, and γV are the cost
coefficients for operating distance and vehicle time.

cOv = γOv dv + γVv t
V
v (5)

The total generalized cost cG in Eq. 6 is the sum of all users’ costs and operator’s costs.

cG =

NR∑
i

cUi +
∑
v∈V

cOv (6)

3 Results and discussion

Scenarios and data

As shown in Figure 2, the bus route 193 in Munich, Germany, serves as a feeder to underground
and suburban rail at its terminus Trudering Bahnhof. Its route length is 5.61km with an assumed
round-trip journey time of 33 min. The simulated time is from 9 pm to midnight with only the
middle hour used to evaluate metrics from the simulation after warm-up and before cool-down.
Trip origins and destinations are derived from an adapted boarding and alighting dataset of a
local public transport operator. The transit alignment and stop locations are extracted from the
GIS data (Münchner Verkehrsgesellschaft, 2024). The road network information is obtained using
OSMnx (Boeing, 2017).
Key parameters are as follows:γR = $16.5/h, γA = $33/h, γW = $24.75/h, γO = $0.694/km, γV =
$7.59/h, γS = γF = 106, ϕ = 1.4, tW,max = 15min, ϕP = 2, cv = 20 (monetary value in US dollars).
SAV cost parameters are referenced from Tirachini & Antoniou (2020).
Monte Carlo simulations are conducted to simulate the feeder service under each scenario with 100
generated demand instances with resulting confidence intervals.

Simulation results

We first discuss the results of a baseline case with 10-minute headway in Figure 3 and Table 1 in the
Appendix. The number of passengers served decreases with longer flexible route portions as shown
in Figure 3(a). The metrics shown below account for the served passengers only. The average
generalized cost per passenger in Figure 3(b) indicates the efficiency of the system, which reached
its minimum at around 2km flexible route portion. In this scenario with high headway, excessive
detour not only reduced the capacity to meet demand but also led to increased operational costs
and additional riding time for passengers. Figure 3(c) illustrates the increasing detours incurred
to the vehicle trips.
Figure 3(d) looks into the trade-offs between various passenger time metrics (in solid lines) in
increasing flexible portion, also compared with the theoretical values assuming a uniform demand
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Figure 2: Munich bus route 193 and a simulated example of semi-on-demand hybrid route

distribution (in dashes). While walking times decrease, signifying better service accessibility, wait-
ing times increase more due to the effects of detours on headway variance. Additionally, riding
times decrease mildly, as contained by the limited number of satisfied requests.
In comparison with the theoretical values, the simulated walking time is similar with an initial
small discrepancy likely due to the non-uniform demand distribution. The waiting time is around
the theoretical level for the first 2km of the flexible portion, after which it shoots up due to the
effects of increased headway variance. Lastly, the riding time fluctuates around the same level as
opposed to the theoretical quadratic increase, probably reflecting the limit set by the detour factor.

Figure 3: (a) Number of passengers served; (b) Average generalized cost per passenger; (c)
Vehicle distance traveled; and (d) Journey time components under varying flexible route
portions

We also analyzed the service performance with other headways as shown in Figure 4. Figure 4(a)
indicates that the number of passengers served drops with longer flexible routes for longer headways,
as each trip consists of more detours. Since the number of passengers served may be a hard
constraint for service guarantees, cases that serve less than 95% of passengers are shown in dotted
lines.
In Figure 4(b), it emerges that smaller headways favor longer flexible routes and reduce the gen-
eralized costs. Figure 4(c) and (d) show the fleet size required and average vehicle occupancy
calculated by distance. In Figure 4(e), a sharp increase in operating costs is observed with smaller
headways. For example, the operating costs associated with a 4-minute headway are around twice
those of a 10-minute headway. This discrepancy underscores the operator’s challenge in balancing
the cost implications of enhancing service quality against the perceived value of time from the
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passenger’s perspective.
The optimal configuration, as corroborated by Ng, Dandl, et al. (2024), appears to be a lower
headway combined with more vehicles and a more flexible route. This arrangement serves most
passengers and minimizes the generalized costs per passenger (e.g., by 22% from $8.4 of the fixed
route to $6.2 of the 5-km flexible route at 4-min headway), striking a balance between service
quality and operational efficiency. However, an operating cost constraint would favor a smaller
portion of flexible routes under a higher headway.

Figure 4: (a) Median number of passengers served; (b) Median generalized cost per passen-
ger; (c) Fleet size; (d) Median average occupancy by distance; and (e) Median operating
cost under varying flexible route portions and different headways

4 Conclusions

This study explored semi-on-demand hybrid route feeder services, validating their performance
with real-world data and offering insights into operational strategies. Despite its proof-of-concept
analysis, certain limitations could be addressed in future research:

1. Future studies should extend the analysis to a wider variety of routes with different charac-
teristics, similar to the approach taken by Volakakis et al. (2023).

2. Some scenarios, particularly at high headways, do not serve all passengers, indicating the
need for considering alternative modes such as bicycles, walking, or ride-pooling.

3. Reduced access costs and enhanced service quality would likely attract additional passengers.
This favors longer fixed routes or smaller headway service-wise and also strengthens the
economy of scale of transit. The demand elasticity should be evaluated.

4. The constant detour factor assumed in the simulation could be optimized to balance riding
time and vehicle requirements.

6



5. Advanced fleet management strategies, such as zonal express services or parallel zone oper-
ations, could be explored to enhance service coverage and efficiency.

In conclusion, this study extends previous discussions of semi-on-demand hybrid route services with
a simulation of a real-world bus route. Further research on its implementation strategy and benefits
will advance our knowledge and application of hybrid route systems in public transportation.
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