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SHORT SUMMARY 

The increase of ride-hailing vehicles’ presence on roads has significantly reshaped transportation 
network dynamics. In the absence of regulations, there is a potential for a decline in service quality 
and overall network efficiency due to ride-hailing operations. This study employs simulation to 
investigate the efficiency of a specific regulation penalizing rides without passengers, aiming to 
mitigate the negative effects of ride-hailing services. Various simulation scenarios are developed, 
integrating the proposed regulation, and evaluated using the MnMs (multimodal network 
modeling and simulation) framework from the LICIT-Eco7 research laboratory (Gustave Eiffel 
University, France). Results indicate that the regulation positively impacts service quality by 
reducing user waiting times but increasing the cancellation rate. Notably, system performance is 
significantly enhanced by decreasing idle kilometers traveled by vehicles. Furthermore, we show 
that the regulation's effectiveness is influenced by factors such as the proportion of a company's 
fleet size and the level of demand. 
Keywords: Mobility Management, Regulations, Ride-hailing, Simulation, Traffic Flow Theory, 
Transport Policy. 

1. INTRODUCTION 

In recent years, the emergence of ride-hailing services has brought significant changes in the 
transportation network performance of many cities (Erhardt et al., 2019). The increased presence 
of ride-hailing vehicles on roads has been identified as a contributing factor to traffic congestion 
(Sun et al., 2019). Companies try to increase their fleet sizes to minimize waiting times, attracting 
customers from competing services by providing enhanced service quality (Gindrat, 2021). How-
ever, the absence of regulations in ride-hailing operations might lead to an extra traffic burden 
and consequently lead to a decline not only in service performance but also affecting other road 
users. Scientific studies and governmental policies address the challenge of mitigating the nega-
tive impact of ride-hailing on the transportation system. Proposed policies fall into categories such 
as pricing regulation (e.g., congestion charges (Vignon et al., 2021)), restrictive measures (fleet 
cap (Ke et al., 2021), wage constraints (Li et al., 2019), fare commission cap (Vignon et al., 2021), 
etc.), and other interventions (fare regulations (Yu et al., 2020), parking strategies (Beojone and 
Geroliminis, 2021), etc.). 

This study employs agent-based simulation to assess the effectiveness of a potential regulation 
strategy implemented by local authorities to mitigate the adverse effects of ride-hailing opera-
tions. The local authority aims to regulate ride-hailing services by imposing restrictive policies. 
The primary research questions addressed in this work include: 
• Does the regulation reduce the negative externalities of ride-hailing operations on the 
network? 
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• How does the regulation impact ride-hailing operations, system performance, and service 
quality? 
 
Multiple simulation scenarios are created, incorporating the regulation, using a Manhattan generic 
network to calibrate settings. This approach enables the observation of behavioral patterns within 
ride-hailing services and an examination of the regulatory scheme. The system encompasses two 
modes of transport: vehicles from two ride-hailing companies and private vehicles.  
 
For the sake of brevity, we excluded from this short paper profit analysis, the analysis of decen-
tralized and centralized operations of companies as well as the impact of different demand distri-
bution patterns on the efficiency of the regulation. Those additional results will be included in the 
final conference presentation. 

2. METHODOLOGY 

To model ride-hailing operations within the network, we utilize an agent-based simulation frame-
work called MnMs (Multimodal Network Modeling and Simulation), developed by the LICIT-
Eco7 research laboratory (Gustave Eiffel University, France). This simulator adopts the trip-based 
MFD concept for the multimodal motion of users and vehicles (Paipuri and Leclercq, 2020). 
 
The city's local authority regulates the ride-hailing market by imposing operational restrictions or 
charges on private companies. Consequently, private companies and drivers must adapt their op-
erational behaviors to comply with these regulations and sustain profitability. Considering that 
idle trip is the travel that a vehicle drives to pick up a customer and service trip is the travel with 
a passenger onboard, below we present the notation (Table 1) used for the modeling where 𝐼, 𝑖 ∈
𝐼, is a set of all possible trips: 

Table 1: Notation 
𝑃!" net trip profit of a driver 
𝑝!# profit from a service trip 
𝑝$!% minimum driver profit from a trip 
𝑝&$ profit per service km 
𝑋! total expenses 
𝑥&$ expenses per km 
𝑙!# service trip length 
𝑙!' idle trip length 
𝐿! total trip length  
𝑤 drivers’ minimum wage per hour 
𝑡!' duration of idle trip 
𝑡!# duration of service trip 

Drivers autonomously determine their operational strategy, and the company does not interfere 
with individual driver decision-making regarding whether to accept a trip request. A driver ac-
cepts a trip if their earning from the trip is more or equal to the minimum driver’s hourly wage 
multiplied by the total trip time (Equation 1): 

𝑃!" ≥ (𝑡!' + 𝑡!#	)𝑤 (1) 

In Equation 2, we compute the driver's net profit by deducting the expenses. Equation 3 repre-
sents the trip profit acquired by the driver, Equation 4 calculates the total trip expenses, and 
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Equation 5 determines the total trip length, including both idle distance and service distance. It 
is important to note that we incorporate a minimum price in Equation 3, denoted as 𝑝$!%, that 
the driver will receive from serving a trip if 𝑙!#𝑝&$ < 𝑝$!%, i.e., when the service distance is too 
small. This consideration aligns with the implementation of minimum prices by on-demand ser-
vice companies in many countries. 

𝑃!" = 𝑝!# − 𝑋! (2) 

𝑝!# = max	(𝑙!#𝑝&$, 𝑝$!%) (3) 

𝑋! = 𝐿!𝑥&$ (4) 

𝐿! = 𝑙!' + 𝑙!# (5) 

In our simulation, when a new demand request appears, we attempt to match it with the nearest 
vacant vehicle. Drivers accept a trip based on the anticipated profitability, which depends on the 
idle distance they need to travel. Consequently, each driver implicitly establishes an idle distance 
threshold. For instance, if the idle distance is excessively high, the driver incurs more expenses 
for the trip, potentially leading to rejection if the trip lacks sufficient profitability. Therefore, the 
dependence of drivers’ decisions on idle distance is integrated into profit formulation, making 
idle distance a key factor in the matching process. 
 
Users in our simulation accept any service price but have specific waiting time tolerances for 
being matched and picked up by a driver. If a user is not matched from the first try, they enter a 
buffer and we attempt to match them in the next timestep. If the waiting time limits are exceeded 
without a successful match, the user abandons the ride-hailing request by canceling it. Our simu-
lation assumes a user's waiting time tolerance for being matched is 3 minutes, and for being picked 
up, it is 10 minutes. Each user is loyal to a specific ride-hailing company and cannot be served by 
the opponent. Elastic or transferable demand requests will be considered in future studies. Re-
balancing strategies are not employed, and while waiting to be matched, the vehicles do not cruise.  
 
The increase in total kilometers traveled by ride-hailing vehicles has an impact on the network 
speed and, consequently, traffic conditions. Since we exclude rebalancing and cruising, the total 
kilometers traveled by ride-hailing vehicles consist of both idle and service (with a passenger on 
board) distances. The service distance depends on the network size and the demand distribution, 
factors beyond the control of regulatory authorities. Thus, we focus on the regulation that can 
impact the idle distance. Based on our previous findings regarding the adverse effects of idle 
distance on traffic conditions (Hryhoryeva and Leclercq, 2023.), we opt for the implementation 
of an idle kilometer charge as a pricing regulation.  
 
This regulation is conceptualized as an additional cost borne by the driver for each kilometer 
traveled without a passenger on board. It is noteworthy that the drivers know the trip destination 
before deciding to accept or reject it, enabling them to evaluate the trip's potential profitability in 
advance. We consider this extra cost burden lies on drivers' shoulders and is not subsidized by the 
company. If 𝑐' represents the charge per idle kilometer and 𝐶! is the total charge paid per given 
trip (Equation 7), then Equation 6 represents the net profit of the driver per trip after deducting 
the fixed expenses and the idle charge. 

 
𝑃!" = 𝑝!# − 𝑋! − 𝐶! (6) 

𝐶! = 𝑙!'𝑐' (7) 
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3. RESULTS AND DISCUSSION 

We use a Manhattan generic network of 9 kilometers per 9 kilometers, with link lengths set at 3 
kilometers, resulting in a total of 16 nodes (4 nodes per 4 nodes) within the network. Each node 
corresponds to one demand area, and these demand regions are classified into three categories: 
low-demand (5 regions), medium-demand (6 regions), and high-demand (5 regions). Figure 1 
illustrates the categories of regions: red are high-demand regions, orange are medium, and yellow 
are low. 

 
Fig. 1: Categories of regions according to the demand level 
 

We consider having two ride-hailing companies (Company1 and Company2, or simply C1 and 
C2) and private vehicles (PV). Among 5000 demand requests that arrive between 5pm (17:00) 
and 8pm (20:00), 20% of it belongs to C1 (1000 demand requests), 20% is attributed to C2 (1000 
requests), and the rest 60% belongs to PV (3000 requests). The peak hour is from 6pm to 7pm, 
and 50% of all demand requests arrive during this time. The rest 25% arrive between 5pm and 
6pm, and another 25% arrive between 7pm and 8pm. Figure 2 visualizes the demand distribution 
over time.  

 
 Fig. 2: Demand requests distribution over the simulation horizon 

 
The initial positions of ride-hailing vehicles in the network are randomly assigned with a uniform 
distribution. The minimum driver profit from a trip 𝑝$!% is 7 euros, profit from each service 
kilometer 𝑝&$ is 1.7, expenses per kilometer 𝑥&$ is 0.3, and drivers’ minimum wage per hour 𝑤 
is 18. 

 
To analyze the system response to the imposed charge, we conduct tests with nine charge prices 
ranging from 0 to 4 in increments of 0.5. These charge prices are applied in scenarios where 
companies operate with six distinct fleet sizes: 50, 100, 150, 200, 250, and 300 vehicles for each 
company. By varying the fleet size while maintaining a constant number of demand requests as-
signed to each company, we explore different ratios of demand flow to the company size. These 
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ratios represent key parameters influencing idle distance (Hryhoryeva and Leclercq, 2023). In 
other words, while having the same demand, the fleet of 50 vehicles might be not enough to meet 
all demand requests, while a fleet of 300 vehicles is more sufficient. 
 
Given that the companies operate independently without direct interaction, and users as well as 
drivers remain loyal to a specific company, our findings indicate that the charge does not impact 
the competition's outcome when both companies have the same fleet size and market share. Thus, 
for the sake of simplicity, we take the mean value of the outcome metrics for the two companies 
for the following analysis of the charge price. 

 
(a)  (b) 

 

 

 
Fig. 3: Influence of the charge price on (a) cancelation rate; (b) average user waiting time; 

 

 
Fig. 4: Marginal effect of fleet size on cancelation 

 
From the user perspective, we observe a rise in demand cancellation rates corresponding to an 
increase in the charge value, which reaches a plateau at the charge value equal to 2 (Figure 3a). 
Notably, for fleets with 50 vehicles, we observe drastic cancelation values that go above 50% and 
have a gap of about 25-30% with the subsequent fleet size of 100 vehicles. Concurrently, the 
impact of increasing charge values on the cancellation rate for the 300-vehicle fleet is less signif-
icant compared to other fleet sizes. This increase in cancellations is attributed to drivers refusing 
trips involving extended idle distances, making users unreachable.  
 
Figure 4 shows the marginal effect of increasing fleet size on cancellation rates under various 
charge values. Notably, starting from a fleet size of 200 vehicles, the change in cancellation rate 
becomes less significant with further increases in fleet size under any charge value. This infliction 
point can be explained as follows. When the fleet size is small, vehicles prioritize the most prof-
itable users in terms of idle distance. As additional vehicles are introduced to the fleet, they easily 
find profitable trips that were previously unserved. I.e., in the beginning, adding more vehicles to 
the fleet has a big impact on the system quality improvement. However, as the fleet size reaches 
200 vehicles, there is a sufficient number of vehicles to serve the majority of requests, leading to 
the cancelation rate being less influenced by the increase in the fleet size.  
 
In terms of waiting time (time between sending a trip request and being picked up), the charge 
increase has more influence on smaller fleets (Figure 3b). This is caused by the reduction in the 
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average idle distance covered by each vehicle per trip request. The cancellation of trips with the 
longest waiting times contributes to the smoothing of curve slopes. Thus, the profile of the aver-
age idle distance is similar to that of the waiting time curve (Figure 5a). It is noteworthy that 
considering canceled trips as equivalent to the nominal 15-minute waiting time and incorporating 
them into the average waiting time data produces a similar curve trend to the total idle distance 
(Figure 5b). Thus, the regulatory strategy effectively filters out long distances that do not con-
tribute to the overall system benefit. So, the canceled trips added to waiting times represent the 
idle distances that have been eliminated. 

 
(a)  (b) 

 

 

 
Fig. 5: Influence of the charge price on (a) average idle distance; (b) total idle distance 

 
From the system's perspective, the total idle distance for each company diminishes as the charge 
increases across all fleet sizes (Figure 5b). However, the reduction in total idle distance is more 
significant for smaller fleets, characterized by steeper slopes. Thus, the drivers begin canceling 
trips with big idle distances due to their unprofitability, resulting in an overall decrease in total 
idle distance.   
 
It is noteworthy that while the curve profiles of average idle distance and total idle distance follow 
a similar pattern, they are not identical. The total idle distance is formed by multiplying the aver-
age idle distance by the fleet size and the number of served requests, while the latter depends on 
the cancelation rate. Thus, the cancelation rate influences the scalability of the curves. As the 
cancelation rate is significantly higher for a fleet of 50 vehicles compared to 100 vehicles, the 
total idle distance curve for 50 vehicles tends to approach that of 100 vehicles more closely than 
the corresponding curves for average idle distance. This occurs because the serving rate of 50 
vehicles is low, resulting in a lower contribution to total idle distance, despite having a high av-
erage idle distance.    
 

 
Fig 6: Network speed under different charge values 
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In Figure 6, the network speed profile is presented under three different charge values, with each 
company operating 150 vehicles. Thus, the charge implicitly influences the network speed. The 
variations in the speed evolution under different charges can be attributed to the reduction in total 
idle distance. As the charge increases, drivers accept requests with smaller idle distances to main-
tain their revenue. This reduction in total idle distance leads to a decrease in the contribution of 
ride-hailing vehicles to traffic, resulting in an improvement in network speed. 
 
During the peak hour in the simulation, an increase in network speed is noticeable under charges 
equal to 2 and 4 compared to the absence of a charge. Thus, the reduction in idle distance caused 
by the charge mitigates the congestion and consequently has a positive impact on the total travel 
time. However, the difference in speed between a charge equal to 2 and a charge equal to 4 is less 
significant due to the marginal reduction in total idle distance. 

4. CONCLUSIONS 

We showed that the policy can effectively reduce the total idle distance traveled by vehicles and 
user waiting time. Although the implementation of this policy leads to an increase in the cancel-
lation rate, the loss in service quality caused by the moderate increase in cancelation is less sig-
nificant than the improvements in waiting time and idle distance. We could also observe that the 
impact of charge varies depending on the proportion of a company's available fleet size and the 
demand level.   
 
For the sake of brevity, we excluded from this short paper profit analysis, the analysis of decen-
tralized and centralized operations of companies as well as the impact of different demand distri-
bution patterns on the efficiency of the regulation. Those additional results will be included in the 
final conference presentation. 
 
Future research includes testing the regulation on the real transportation network using a simula-
tion with realistic demand and supply information. 
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