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Short summary

Traffic dynamics is a complex phenomenon. Visualizing and uncovering its hidden complexities
using simple topological features with clear physical interpretations allows us to improve traffic
predictions and offer valuable insights to decision-makers. This study delves into the relationship
between these topological features and actual traffic data, with an emphasis on the highway net-
work in the Netherlands. Using both traffic data and complex network analysis techniques, we
explore how the betweenness centrality (BC) corresponds to patterns in traffic flow and speed. We
apply Pearson correlation analysis to quantify these relationships, especially during peak traffic
hours. Interestingly, while the results show that the correlation between BC and traffic flow and
speed is not strong during the day, a more intricate relationship emerges during peak times. We
showed that BC demonstrates a notable negative correlation with traffic speed, a finding that is
statistically significant (p-value ≤ 0.05). These insights pave the way for a deeper understanding
of how network topology affects traffic behavior.
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1 Introduction

Traffic congestion worldwide leads to longer travel times, increased pollution, and lower living
standards. Understanding its contributing factors enables transportation planners to design more
efficient highway networks, improving traffic flow. Network analysis and visualization techniques
have become effective tools for examining the dynamics and structure of urban transport and road
networks. The aim is to comprehend their spatial structure and dynamics better, with the ultimate
goal of enhancing transportation services’ efficiency and fairness, as well as improving the perfor-
mance of road traffic. Researchers have explored the applications of complex networks analysis in
understanding mobility networks through the lens of road traffic and public transport networks.
For instance, some researchers put their focus on investigating road networks. In a study, Xu et
al. developed an evaluation mechanism for Sydney’s urban road network, using a binary directed
weighted network to assess node degrees, traffic flow, and network efficiency Xu et al. (2022).
Saberi et al. proposed a contagion model to understand traffic congestion patterns in urban areas,
similar to infectious disease spread models Saberi et al. (2020). Sheikh and Regan introduced a
method combining time series analysis and independent component analysis for traffic incident
detection, proving effective in both simulated and real-world scenarios Sheikh & Regan (2022).
Curado et al. analyzed private vehicle mobility in Rome and London, using centrality measures
in a multidimensional network to identify key urban zones for mobility and tourism Curado et al.
(2021).
Also, in public transport area of studies, Luo et al. found network properties to be good estimators
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of passenger flow in public transport systems, offering a simpler alternative to traditional models
Luo et al. (2020). Wei et al. studied the impact of administrative boundaries on bus network in-
tegration in Nanjing, highlighting the need for strategic planning for spatial fairness and efficiency
in public transport Wei et al. (2021). Dai et al. used complex network theory to explore the rela-
tionship between bus line structures and passenger flows in Beijing, finding similar spatial patterns
and peak congestion times Dai et al. (2022). Meng et al. examined the complexity of Shenzhen’s
metro networks during rush hours, suggesting targeted passenger flow control for enhanced safety
and resilience Meng et al. (2023).
The motivation behind this study lies in the lack of comprehensive research on motorway networks
and the actionable insights it can offer to transportation planners, policymakers, and engineers
responsible for optimizing traffic flow and improving the performance of the highway network. By
establishing correlations between traffic data and topological features, we can gain a deeper un-
derstanding of how network properties influence traffic patterns to identify bottlenecks, optimize
road capacity, and enhance network resilience. Furthermore, such insights can assist in the design
and development of future transportation networks, taking into account the relationship between
network topology and traffic dynamics. Moreover, there is still a need for comprehensive studies
focusing specifically on motorway traffic data, providing an opportunity to uncover valuable in-
sights and contribute to the existing body of knowledge in transportation network analysis.
In this study, we focus on the Netherlands highway network which is renowned for its advanced
transportation system and has witnessed tremendous growth in vehicular traffic over the years.
With increasing population, urbanization, and economic activities, it becomes imperative to com-
prehensively analyze the factors impacting traffic conditions and explore the role of network topol-
ogy in shaping traffic dynamics. The topological characteristics of the Netherlands highway network
and actual traffic statistics are compared to see how they relate to one another. For each node
(intersection) in the network, we specifically look at how the Betweenness centrality (BC) of that
node relates to traffic flow and speed. In order to find patterns and correlations in the traffic data,
we employ complex network analysis with a preprocessed dataset from the highway network of the
Netherlands.
The paper’s structure includes: Section 2 describing our evaluation methods, Section 3 presenting
our findings and analysis of BC, traffic flow, and speed, and Section 4 concluding with future
research recommendations.

2 Methodology

Data preparation

For this study, we employed traffic data sourced from the Nationaal Dataportaal Wegverkeer
(NDW) in the Netherlands, which utilizes loop detectors scattered throughout the Dutch highway
network. Our study focused specifically on one week’s worth of data, gathered between 6-12 June
2022 and for each day we have the data from 5:00 to 23:00.
The geographic locations of each intersection on the roads, obtained from NDW open data, were
used to construct the highway network. In this network, junctions are represented as nodes, while
the roads connecting them are referred to as links. To ensure better topological feature extraction,
first, we extracted the largest connected component of the network. This process involved removing
750 isolated nodes from the network, and keeping the giant component of the network with 6775
nodes. Then, to focus on significant intersections, we further coarsened the network by neglecting
nodes with a degree of 2 and kept the nodes with degree 3 or higher, which resulted in a final
network with 1235 nodes and 1684 edges. These nodes represent big intersections, main crossroads,
and facilitate the calculation of more meaningful topological features. Figure 1 shows the network
before and after coarsening.
The loop detector data from NDW measures both speed and flow. In the Netherlands, there are
approximately 10,000 loop detectors placed in the highways which collect data every 1 minute
and are placed approximately 500 meters apart. In our study, we use a well-known estimation
technique Adaptive Smoothing Method to obtain aggregated data with a uniform temporal and
spatial resolutions of 5 minutes and 500 meters, respectively. The aggregation is done based on
traffic flow theory and the detailed filtering method can be found in Schreiter et al. (2010).
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Figure 1: The highway network of the Netherlands. The blue lines represent the parts
of the network with loop detectors to gather the traffic data and the red dots represent
all intersections. Figure A shows nodes of the network before coarsening and Figure B
represents them after coarsening.

Calculating network topological features and correlation analysis

We examined four different centrality measures for this study: degree centrality, eigenvector cen-
trality, closeness centrality and betweenness centrality. Among all of them, the BC showed more
discernible correlation patterns with the traffic data. Thus, we only present BC to keep the results
concise in this paper. BC captures the importance and influence of nodes within the network. This
feature quantifies the amount of control a node exerts over the interactions of other nodes in the
network. Nodes with high BC can often influence the flow of traffic in the entire network, making
it a global measure of centrality Brandes (2001). Nodes with high BC act as key traffic channels.
Delays around nodes with higher BC can disrupt the entire network, making them priorities for
traffic control. The following equation shows how the BC is being calculated:

cB(V ) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

where V is the set of nodes, σ(s, t) is the number of shortest paths, and σ(s, t|v) is the num-
ber of those paths passing through some node v other than s,t. If s = t, σ(s, t) = 1 , and if
v ∈ s, t, σ(s, t | v) = 0.

In our study, we employed Pearson correlation analysis to quantify the degree of association between
traffic data and various network topological features Meghanathan (2015). Specifically, we focused
on traffic flow during peak hours, which were identified as 06:00 to 10:00 and 15:30 to 19:00. These
peak hours were chosen as they represent the busiest periods of the day when traffic congestion is
at its highest and understanding the dynamics is most crucial for traffic management.
To assess the strength and direction of the linear correlation between traffic flow and BC, we
calculated the Pearson correlation coefficient. We are interested to see if there is a negative or
positive correlation. Also, we computed the p-value to determine the statistical significance of the
observed relationships. In our study, we considered a p-value of less than 0.05 to be statistically
significant, which is a commonly accepted threshold in the statistical analysis.
To calculate the Pearson correlation, first, we computed the average inbound and outbound flow
for each node (intersection) within the distance of two kilometers for each 5 minutes for each day.
Then, for each time step, we calculated the Pearson correlation between the BC of all nodes in the
network and their average inbound flow and outbound flow. We also did the same process for the
inbound speed and outbound speed.
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Figure 2: The selected subnetwork for correlation analysis highlighted with the shaded
polygon. The examined intersections for the correlation analysis have been highlighted
with red dots.

3 Results and discussion

Our analysis reveals some interesting findings about the correlation between BC and the mean
traffic flow and speed throughout an entire week including work days and weekends. We per-
formed the correlation analysis on the whole highway network of the Netherlands, and separately
did the calculation for work days and weekends. We then performed the same correlation analysis
for a region in South Holland province, which has the highest population among other provinces
in the Netherlands. It is important to note that for this sub-network we used the same BC scores
that have been calculated based on the whole network to see how the identified nodes with higher
importance contribute to traffic congestion in their local area. Figure 2 shows the selected sub-
network for the correlation analysis.

Figure 3 illustrates the correlation between inbound and outbound traffic speed and the BC for the
whole highway network of the Netherlands and the selected sub-network in South Holland province.
Figure 4 shows the same correlations for the traffic flow data. By looking at the highway network as
a whole, we did not observe a significant correlation between the BC and the traffic speed and flow
(the left two columns in the mentioned figures). This raised the assumption that we might have
nodes with high BC all over the highway network, and most of them may not experience heavy
congestion. To confirm this assumption, we picked a region around two big cities in South Holland
and calculated the correlations again. As shown in the right two columns of Figure 3 and Figure
4, we observe significantly stronger correlations between traffic speed, flow, and the BC in the
selected sub-network. Notably, within this sub-network, the correlation of BC with traffic speed
is more pronounced than with traffic flow, particularly during peak hours. However, the p-value
indicates that the observed fluctuations in our figures could be random, this could be attributed
to the analysis of the aggregated data for multiple days in each case. For this, we calculated the
average of correlations and p-values per time step across all days.
Therefore, we picked the selected region to look deeper into the correlation patterns during the
week. Figure 5 shows the correlation between the inbound and outbound traffic speed and the BC
for the selected sub-network and their p-value. As depicted in the figure, we observed a strong
negative correlation in peak hours during workdays, except on Monday. However, this strong
correlation was missing during the morning peak hours on Wednesday and Friday. To assess the
statistical significance of these correlations, we employed p-values. Our null hypothesis stated that
any perceived correlation between traffic speed or flow and BC is random. Figure 5 shows that the
p-value reject this hypothesis and confirms that the correlations during peak hours are significant.
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Figure 3: Average correlation between inbound and outbound traffic speed and BC for
the whole highway network of the Netherlands and a selected region in the South Holland
Province. The shadowed time frames represent the peak periods.

Figure 4: Average correlation between inbound and outbound traffic flow and BC for the
whole highway network of the Netherlands and a selected region in the South Holland
Province
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Figure 5: The correlation between the inbound and outbound speed and the BC for the
selected sub-network. The data has been shown for each 5 min for June 6th and June
12th, 2022.

The presented correlation analysis shows the influence of topological features, in particular BC,
on traffic flow and speed and provides valuable insights on the highway network structure, which
can be crucial for traffic planners and policy managers to factor into their future analysis. When
considering aggregated data across days, the correlations were not significant which emphasizes
the complex nature of traffic flow dynamics, which are likely influenced by other factors beyond
network topology, e.g., demand patterns.

4 Conclusions

This study is a part of a bigger work on traffic data analysis in which we delved into the intri-
cate relationship between the topological characteristics of the Netherlands’ highway network (e.g.
betweenness centrality) and actual traffic conditions. Employing complex network analysis tech-
niques, the study assessed how BC correlates with traffic speed and flow. The results indicate a
generally weak linear correlation between BC and traffic parameters for the whole highway network
of the Netherlands. However, when we zoomed in and looked at the South Holland province we
could easily see the strong negative correlation between the BC and traffic speed during peak hours.
These findings reveal that despite the complex interplay of factors influencing traffic dynamics, the
network topology alone may be a decisive predictor. The insights gained provide valuable context
for transportation planners and policymakers, emphasizing the need for multi-faceted strategies in
traffic management and network design.
Further research could explore how other variables, such as road capacity, interact with network
topology and how these variables can be exploited to make faster and more accurate traffic pre-
diction models. Also, traffic engineers can study how targeted traffic management strategies like
variable speed limits in areas identified as critical nodes (high BC) interact with the network
topology to affect traffic flow.
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