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Short summary

Equity is a key issue that hampers public acceptability of congestion pricing. Although revenue
refunding and tradable mobility credit (TMC) schemes offer a means to redress issues of equity, they
cannot guarantee Pareto-improvement (i.e., no user is worse off) when toll revenues are uniformly
redistributed (or credits in the case of TMCs). In this paper, we develop a bi-level optimization
framework for both pricing with personalized revenue refunding and TMCs with personalized
credit distribution that are efficient, equitable, and Pareto-improving. The system optimization
level determines the tolling policy while the user optimization level determines an individual-specific
refunding of revenue (or distribution of credits for TMCs). Simulation experiments for the morning
commute problem in a combined mode and departure time context (with heterogeneity and non-
linear income effects) demonstrate that the proposed approach can make congestion tolling Pareto
improving and more equitable while attaining desired improvements in network congestion and
welfare.
Keywords: Congestion pricing, tradable credits, equity, revenue recycling

1 Introduction

Traffic congestion is a pressing issue that imposes significant costs on the economy, environment and
society. Congestion pricing is widely recognized as being an effective means of managing congestion
(Lindsey & Verhoef, 2001; de Palma & Lindsey, 2011) and can influence the entire spectrum of
travel decisions including trip generation, departure time, mode and destination choices (de Palma
& Lindsey, 2011). Successful implementation of congestion pricing schemes include Singapore’s
Electronic Road Pricing Scheme (ERP), London’s Congestion Charge (CC), and Stockholm’s Con-
gestion Tax.
However, the issue of equity remains one of several challenges to the successful implementation
and acceptance of congestion pricing as evident in the failures of previous attempts in Greater
Manchester, Edinburgh and New York City. One of main reasons is that the out-of-pocket charges
of congestion pricing disproportionately hamper low-income users from using road facilities and
make road usage a privilege of high-income users (Lindsey & Verhoef, 2001; Gu et al., 2018).
Studies (Jaensirisak et al., 2003) have indicated that congestion pricing can be more acceptable
if it increases everyone’s benefit (termed Pareto-improving) besides the overall net social benefit
(welfare). Two means of achieving this are first, revenue recycling or refunding schemes (Small,
1992) which simply involve a re-distribution of toll revenues back to users and second, tradable
mobility credit schemes (TMCs), which are a hybrid form of price and quantity control (Grant-
Muller & Xu, 2014). In TMCs, the issue of equity can be addressed through the initial distribution
of mobility credits.
The literature has shown that in the case of congestion pricing, refunding toll revenues uniformly
to users does not guarantee Pareto improvement (see Small (1992); Arnott et al. (1994)). Revenue
refunding schemes and the conditions under which Pareto-improvement may be possible have been
widely studied using both network equilibrium and bottleneck models (Nie & Liu, 2010; Xiao &
Zhang, 2014; Guo & Yang, 2010). Thus, some form of personalization is necessary to guarantee
that both the pricing and TMC schemes are Pareto-improving. Literature on personalized pricing
in the transportation field is limited, but applications can be found in the airline industry, where
personalized fare offers based on estimated WTP have been implemented (Wittman & Belobaba,
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2017). Zhang (2019) develop personalized discounting policies for managed lane tolling; other
applications of personalization in transportation include the provision of incentives to promote
sustainable behavior (Azevedo et al., 2018; Xie et al., 2020).
In this paper, we attempt to address the aforementioned equity issues by proposing a bi-level
optimization framework for both pricing with personalized revenue refunding and TMCs with
personalized credit distribution that guarantees Pareto improving outcomes.

2 Methodology

We first describe the problem context and simulation approach, followed by the optimization
framework in three parts: pricing with no refunding, pricing with uniform refunding and pricing
with personalized refunding. Finally, we discuss how these formulations can be utilized to determine
a personalized allocation of credits for TMC schemes.

Context and simulation framework

The simulation framework builds upon Chen et al. (2023), which we summarize briefly. We consider
N travelers who commute daily between a single origin-destination pair. For simplicity, each
traveler has a single morning trip explicitly simulated, and their evening trip is assumed to mirror
the morning trip. We consider a standard bi-modal transportation network (similar to Liu & Szeto
(2020)) where travelers choose between driving and a public transit alternative. If they drive, they
use a path containing a bottleneck of fixed capacity and choose their time of departure. We do
not consider the departure time dimension for the transit alternative.

Figure 1: Modeling and simulation framework

At the beginning of each day, travelers use forecasted information on travel times, schedule delays,
and account balance (TMC only) to make a pre-day mobility decision. This decision involves
choosing a mode (car or public transit) and a departure time for the morning commute trip.
Travelers opting to drive may encounter a time-of-day toll (charged in either dollars or mobility
credits). The individual mobility decisions are modeled using a logit mixture model that allows
for heterogeneity and non-linear income effects.
The mobility decisions are simulated on a simple network with a single driving path and an alter-
native public transit (PT) line. Congestion for driving is modeled by a standard bottleneck model,
in which a queue develops once flow exceeds capacity. Public transit travel time is assumed to be
constant.
Day-to-day dynamics is modeled through an exponential smoothing filter to update forecasts of
travel time and account balance (TMC) throughout the day. The simulation framework in Figure
1 is used to simulate the evolution of the system state (departure flows, travel times) until conver-
gence is reached. Performance measures such as overall welfare, user benefits, and congestion are
evaluated at convergence. The model is a doubly dynamical system, which considers the day to
day evolution of a within-day dynamic system involving departure-time and mode choices.
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We next describe the demand model, which captures the combined decision of choosing a depature
time and mode. The day is discretized into h = 1 . . . H time intervals of size ∆h (let the set of all
time intervals in the day be denoted by H = {1, . . . , h, . . . ,H}).
Each individual n has a choice set of mode defined as Mn = {C,PT} (C for car and PT for public
transit) and a set of feasible departure time intervals Hn = {t̃0n − η∆h, t̃0n − (η− 1)∆h, . . . , t̃0n +
η∆h} consisting of 2η time intervals of size ∆h centered around the preferred departure time
interval on day 0, t̃0n. t̃0n is computed based on the preferred arrival time t̂n and the free flow
travel time.
The set of feasible departure time intervals under instrument j (j = NT,P,M for the No Toll
scenario, congestion pricing, and the TMC scheme respectively), is denoted Hj

n ⊆ Hn. Under the
No Toll scenario, HNT

n = Hn. For the transit alternative, we consider only one departure time
interval that will result in an arrival time closest to the preferred arrival time. This is denoted
by hPT

n . Let i = {m,h} ∈ In represent an individual’s mobility decision (where In = {C, h|h ∈
Hj

n}
⋃
{PT, hPT

n }).
The money-metric utility of an individual n driving and departing in time interval h (choosing
i ∈ {C, h|h ∈ Hj

n}) under instrument j is defined as,
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ϕ̃j,n
i is a vector of forecasted information in the systematic utility that consists of six components.

The first is forecasted travel time τ̃ ji , which determines the expected schedule delay early (second
component) and schedule delay late (third component). The fourth component is expected cost
c̃jin (operational costs and the toll payment). The fifth component is individual refund in dollars
ajin, if any. The last component is remaining income, which is equal to the disposable income for
transportation In minus expected cost c̃jin plus individual refund in dollars ajin. ϵin is assumed to
follow an i.i.d. extreme value distribution with zero mean and individual specific scale parameter
µn. More details on the supply model and the day-to-day learning framework can be found in
Chen et al. (2023).

Pricing with no refunding

We denote the instrument of congestion pricing with no revenue refunding as P−. The problem
of determining the optimal toll in dollars for pricing, TP−(h), ∀h ∈ H can be formulated as a
simulation-based optimization problem with the objective of maximizing total social welfare (SW )
as follows

max
TP−

ZP− +KP−

s.t. ZP−,KP− = SM
(
T P−, ξ,ψ

)
T P− = {TP−(h)|h ∈ H}
T P− ≥ 0

(4)

where ,the toll profile T P− is a set of toll values over the entire day. ξ represents all input data for
simulation, such as individual income, preferred arrival time, and choice attributes. ψ represents all
model parameters, such as demand model coefficients, bottleneck capacity, user learning weights,
and market parameters for the TMC scheme. The SM(·) function is the system model discussed
previously. The toll function that we consider is a step toll profile (of the kind implemented in
Singapore and Stockholm), which consists of five step toll values and six break points.
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The regulator revenue KP− is given by,

KP− =

N∑
n=1

∑
i∈Mn×HP−

n

ĉP−
in In

(
i|T P−) , (5)

where i is the mobility decision, In(i|T P−) is an indicator if traveler n chooses mobility choice
i given toll vector T P−; ĉP−

in is equal to the toll payment for driving (TP−(h)) or the PT fare
payment for PT (cPT ); and HP−

n is the set of feasible departure time intervals.
We measure user benefits (Zj) under instrument j as the sum of all users’ net experienced utilities
relative to NT denoted as zjn, given by,

zjn = max
i∈Mn×Hj

n

(
Uin

(
ϕj,n

i

))
− max

i∈Mn×HNT
n

(
Uin

(
ϕNT,n

i

))
, (6)

where ϕj,n
i is a vector of experienced variables under instrument j and ϕNT,n

i is a vector of
experienced variables under NT .
Hence, the user benefits Zj can be written as

Zj =

N∑
n=1

zjn (7)

Pricing with uniform refunding

For pricing with uniform distribution (PU), the idea is to distribute regulator revenue equally to
all users to improve everyone’s benefit and make the pricing scheme more politically acceptable.
The toll profile optimization can be formulated similarly to the problem formulated in Equation
4 to incorporate the additional revenue refund constraint as follows (δ denotes the fraction of toll
revenue redistributed),

max
TPU

ZPU +KPU

s.t. ZPU ,KPU , EPU = SM
(
T PU , aPU , ξ,ψ

)
aPU =

1

N
δEPU

T PU = {TPU (h)|h ∈ H}
T PU ≥ 0

(8)

Under pricing with uniform distribution (PU), the surplus of regulator can be written as,

KPU =

N∑
n=1

 ∑
i∈Mn×HPU

n

ĉPU
in In(i|T PU , aPU )− aPU

 (9)

Pricing with personalized refunding

The pricing with personalized distribution (PI) is formulated as a bi-level optimization problem.
The system optimization is to determine the tolling rates with the objective to maximize social
welfare and the user optimization is to determine the individual refund under suitable objectives
(e.g achieve Pareto improvement or maximize social welfare). These two levels are interdependent
in that the system optimization depends on the user optimization solution while the user optimiza-
tion is also dependent on the system optimization solution. The proposed bi-level optimization
framework reconciles often conflicting user and system objectives.
For the system optimization, its objective is the same as the objective of PU, which can be formu-
lated as follows,
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max
TPI

ZPI +KPI

s.t. ZPI ,KPI , EPI = SM
(
T PI ,aPI , ξ,ψ

)
aPI = UO

(
T PI(h)|ξ,ψ

)
N∑

n=1

aPI
n ≤ δEPI

T PI = {TPI(h)|h ∈ H}
T PI ≥ 0

(10)

where aPI represents a set of refunds over the population {aPI
n |n = 1, ..., N} determined from

the user optimization (UO) given toll policy T PI determined in system optimization. The total
revenue refund has to be less or equal to available revenue for distribution.
The (net) regulator revenue KPI can be written as

KPI =

N∑
n=1

 ∑
i∈Mn×HPI

n

ĉPI
in In

(
i|T PI , aPI

n

)
− aPI

n

 (11)

The user optimization (UO) can be formulated in different ways. In order to ensure a Pareto
improving outcome (i.e. everyone is not worse off but at least one is better off) compared to NT,
the revenue can be distributed to make sure every traveler’s net experienced utility relative to NT
is non-negative. The personalized refunds with this distribution rule is denoted as PIH .
Let zn

(
In − cPIH

in + aPIH
n

)
denote individual n’s net experienced utility under PIH relative to NT

as a function of her remaining income In − cPIH
in + aPIH

n . The Pareto improving distribution rule
can be written as follows,

if zn

(
In − cPIH

in

)
≥ 0, then aPIH

n = 0

else set aPIH
n s.t. zn

(
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in + aPIH
n

)
= 0
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n

(
Uin

(
ϕPIH ,n

i

))
− max

i∈Mn×HNT
n

(
Uin

(
ϕNT,n

i

)) (12)

If the individual net experienced utility is already positive, then she receives no refund; otherwise,
she receives the amount of refund that makes her net utility equal to 0. Since the income effect
is modeled by a strictly monotonic quasi-concave function, which is continuous over the interval
that In − cPIH

in + aPIH
n > 0, Equation 12 has a unique solution aPIH

n . Note that the condition
In − cPIH

in + aPIH
n > 0 is guaranteed because of budget constraints.

Alternatively, the objective of user optimization can be to maximize social welfare, i.e. to refund
revenue to users who value it the most. In other words, low income users receive revenue refunds
first, which implicitly also improves equity. The personalized refunds with this distribution rule
is denoted as PIS . In this case, an additional decision variable that needs to be optimized in
the system optimization is the revenue distribution control parameter yd, which determines who
is eligible and how much they can get. Let PIS denote the instrument with the distribution rule
based on the remaining income. The corresponding distribution rule can be written as,

if In − c̄PIS
in ≥ ŷd, then aPIS

n = 0

else set aPIS
n s.t. In − c̄PIS

in + aPIS
n = ŷd

(13)

where c̄PIS
in represents the cost of the chosen alternative in PIS ; the revenue distribution control

parameter ŷd is in unit of dollars and can be optimized in the system optimization. This distribution
rule also has an unique solution for everyone because the remaining income In − c̄PIS

in is a strictly
monotonic and continuous function.
Finally, it is possible to combine the Pareto improving distribution rule in Equation 12 and the
social welfare maximization distribution rule in Equation 13 to have a hybrid distribution rule,
which ensures Pareto improvement first and if there is some revenue left over, it can be distributed
to maximize social welfare. As a result, the performance of this hybrid rule can be expected to
dominate the pure Pareto improving distribution rule in terms of both efficiency and equity.
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The approaches and formulation can be extended to the TMC case although the day-to-day system
is more complex due to token price dynamics. We propose a simple approach to compute optimal
solutions for the MU and MI instruments as follows. Assume the equilibrium token price is $1, then
the system optimization solution —toll profile in dollars, can be converted to toll profile in tokens
for MI; while the user optimization solution —personalized refunds in dollars, can be converted
to the personalized token allocations.

3 Results and discussion

We adopt the same experimental setup as in Chen et al. (2023). Key model parameters and inputs
are summarized in Table 1. The individual daily disposable income In is derived from pre-tax
annual income, which is a lognormal distribution fitted using the Integrated Public Use Microdata
Series (IPUMS) 2019 census data (Ruggles et al., 2021). Individual values of time αn are calculated
as one thirds of the wage rate (White, 2016) and will be varied with different levels of heterogeneity
in experiments. The ratio of values of schedule delay early βEn to values of time αn is assumed to
follow a triangular distribution from 0.1 to 1 with a mode at 0.5. The ratio of values of schedule
delay late βLn to αn is assumed to follow a triangular distribution from 1 to 3 with a mode at 2
(Small, 2012).

Table 1: Model and simulation parameters

Variables Description Values
N Population 7, 500
∆t Duration of a simulation time step 1 min
∆h Duration of a departure time interval 5 min
∆a Size of desired arrival window 0 min
η Departure time window size parameter 30
λ Coefficient of nonlinear income effect 3
γ Nonlinear income effect adjustment parameter 2
s Bottleneck capacity (per min) 39
t0 Free flow travel time 24 mins
cf Operation cost of car $3.13
τPT PT travel time 43 mins
WPT Expected waiting time 5 mins
cPT Operation cost of PT $2

Three important factors: capacity, income effect and heterogeneity are varied one at a time across
three levels as presented in Table 2. Values used in the base case are highlighted in red.

Table 2: Factor levels for experiments

Factor Level 1 Level 2 Level 3
Capacity (s) -15% 0% 15%

Income Effect (λ) 0 3 6
Heterogeneity (c.o.v) 0.2 0.9 1.6

For each scenario, six instruments and NT are simulated with five different random seeds until
convergence. The selected instruments are pricing without distribution (P−), pricing with uni-
form distribution (PU), pricing with personalized social welfare maximization distribution rule
(PIS), pricing with personalized hybrid distribution rule (PIH), TMC with uniform (MU) and
personalized distribution (MI) (hybrid rule). For all instruments, the associated bi-level optimiza-
tion problem is solved using a Differential Evolution (DE) algorithm to determine the optimal toll
rates, refunds and credit allocation, and system performance. We assume all regulator revenue is
available for redistribution (i.e. δ = 1).
We now discuss findings. First, the premise of achieving Pareto improvement from toll revenue
redistribution is that available revenue for distribution can cover total user losses. We find that this
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holds for the pricing without distribution instrument P− across all of our simulation experiments
as shown in Figure 2, where ZL represents the aggregate user losses and K represents the regulator
revenue.

(a) Capacity (b) Income effect

(c) Heterogeneity

Figure 2: Regulator revenue versus user loss for the pricing without distribution (P−)

The comparative performance of the various instruments under varying levels of capacity (for
brevity we focus only on capacity) in terms of social welfare, Gini coefficient (GC), PT share and
travel time index (TTI) are shown in Figure 3. The social welfare is computed relative to the NT
and consists of the user benefit and regulator revenue.
As capacity level decreases, congestion increases and the social welfare of all instruments increase
relative to NT. Among all instruments, PIS achieves the highest social welfare as its distribution
rule is to maximize social welfare directly. The pricing with hybrid distribution rule PIH has social
welfare less than that of PIS as its revenue is distributed to compensate all users’ losses (not only
low-income users) to ensure Pareto improvement. The pricing with uniform distribution PU has
social welfare less than that of PIH as its revenue is distributed uniformly to all users including
those who do not have losses.
We can also observe than TMC with uniform token allocation MU performs the same as PU
and TMC with personalized token allocation MI performs the same as PI given the effect of
transaction fees are minimal. This is because the market value of token allocation is roughly equal
to the dollar value of the corresponding refund, which causes similar behavior changes since the
income effects are similar.
GC is calculated using the individual disposable income In plus her benefit zn. GC of P− increases
as capacity level decreases, which implies that P− becomes less equitable. This is because as
capacity level decreases, the toll has to increase to deal with the increasing congestion leading to
the greater losses of low income users. Among all instruments, PIS is the most equitable because
the social welfare maximization distribution rule also directly benefits low income users. It becomes
more equitable as capacity level decreases because more revenue can be distributed to benefit low
income users. PIH is less equitable than PIS because its revenue is distributed to compensate all
users’ losses. PU is less equitable than PIH because its revenue is distributed uniformly to all
users. The TMC instruments have the same equity as the corresponding pricing instruments with
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(a) Social welfare (b) Gini coefficients

(c) PT share (d) Travel Time Index

Figure 3: Variation of performance measures with capacity

refunding because of similar reasons mentioned in social welfare discussion. A uniform refund or
token allocation always improves the Gini coefficient because it increases the proportion of user
benefits obtained by the lower income segments.
The distributional impacts of instruments are shown in Figure 4. The y-axis is cumulative user
benefits normalized by population size. The x-axis of Figure 4a (left column) is user benefit
percentile while the x-axis 4b (right column) is income percentile. If an instrument is Pareto
improving, then its line should not go below 0 in Figure 4a. In addition, if an instrument is
progressive, then its line will increase fast initially in Figure 4b, which means low income users
have a large share of user benefits.
We can observe that P− is regressive and not Pareto improving because low income users have
losses in Figure 4a. Uniform distribution (PU and MU) cannot eliminate “losers” because every
user receives the same amount of refund. Although PIS benefits low income users significantly
compared to other instruments as shown in Figure 4b, the mid income users still have losses. PIH
and MI are not only progressive in that they benefit low income users more than other users as
shown in Figure 4b, but also Pareto improving since no user has a loss as shown in Figure 4a.

4 Conclusions

The results demonstrate that the developed bi-level optimization framework can significantly im-
prove the distributional impacts of congestion pricing to achieve progressive Pareto improving
outcomes while attaining comparable welfare gains and congestion reductions as pricing with re-
funding. This is promising and could improve the public acceptance of congestion tolling as it
addresses the important and long-standing issue of equity.
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(a) Ordered by benefit (Lorenz curve) (b) Ordered by income

Figure 4: Variation of cumulative user benefits with capacity
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