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Short summary

Traditional Activity-based models (ABMs) treat individuals as isolated entities, limiting behavioural
representation. Econometric ABMs assume agents schedule activities to maximise utility, explained
through discrete choices. Using discrete choice models implies the need for calibration of maximum
likelihood estimators of the parameters of utility functions. However, classical data sources like
travel diaries only contain chosen alternatives, not full choice set, making parameter estimation
challenging due to unobservable, and combinatorial activity spatio-temporal sequence. To address
this, we propose a choice-set generation framework for household activity scheduling, to estimate
significant and meaningful parameters. Our methodology adopts a Metropolis-Hastings sampling
approach, and extends it to encompass parallel generation for all household agents, household-
level choices, and time arrangements. Utilising this approach, we then estimate parameters of
household-level scheduling model presented in (Rezvany et al., 2023). This approach aims to gener-
ate behaviourally sensible parameter estimates, estimated on ensemble of schedules with consistent
alternatives for household members, enhancing model realism in capturing household dynamics.
Keywords: Activity-based modelling, Choice-set generation, Discrete choice modelling, Intra-
household interactions.

1 Introduction

Motivation and scope

ABMs represent travel demand driven by spatially and temporally distributed activities, incorpo-
rating more behavioural realism compared to traditional trip-based models. This approach has
been of interest to modellers and analysts in different domains such as transportation and energy
research. Individuals do not plan their day in isolation from other members of the household.
Their decision-making involves considering the activities and schedules of other household mem-
bers and sometimes individuals in their social network. Various interactions, time arrangements,
and constraints affect individuals’ activity schedules. However, most ABMs do not consider these
household dynamics. Hence, models dealing with individual choices need to be revisited to take
account of the intra-household interactions.

ABMs research encompasses rule-based computational process models and econometric models.
The latter assumes that individuals schedule activities to maximise utility, explained through dis-
crete choices using advanced econometric methods. Nevertheless, these models confront challenges
in accurately estimating parameters.

Consistent estimation of parameters requires behavioural data records on hypothetical or unseen
situations in addition to the chosen alternative (revealed preference), which are not all necessarily
observable and not available in classical data sources such as travel diary surveys or time use data.
Moreover, the derivation of choice probabilities and likelihood functions requires the modeller to
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assume a universal choice set which is finite and enumerable. However, the full choice set of possi-
ble activities and their spatio-temporal sequence is combinatorial and cannot be enumerated, while
individuals are only aware of a fraction of the full choice set. Therefore, exploring and operational-
ising appropriate choice set generation techniques is another challenge.

Choice set generation technique using a Metropolis-Hastings based sampling algorithm can be a
smart move to strategically sample alternatives, to calibrate econometric activity-based models.
This functionality adopts the Metropolis-Hastings based sampling algorithm introduced by Pougala
et al. (2021). As intra-household interactions cause additional choice dimensions, time arrange-
ments, constraints, and group decision-making mechanism, the interactions should be considered
in the choice set formation to ensure consistency of generated alternatives.

In this paper, we present a choice set generation framework for household activity scheduling, gen-
erating an ensemble of schedules with consistent alternatives for all household members. To explore
the combinatorial solution space of full set of feasible schedules, we adopt the Metropolis-Hastings
based sampling algorithm introduced by Pougala et al. (2021) Necessary considerations in house-
hold choice set generation is noted. Utilizing the choice set generation technique, the parameters of
a utility-based household scheduling model presented in (Rezvany et al., 2023), the household-level
Optimisation-based Activity Scheduling Integrating Simultaneous choice dimensions (OASIS), is
estimated. The results and behavioural implications are then discussed.

The remainder of this manuscript is structured as follows. Section 2 discusses household-level
choice set generation methodology. Section 3 presents a practical application. Concluding remarks
and future research are presented in Section 4.

Relevant literature

ABMs traditionally centered on individual decision-making, often fail to capture the interdepen-
dencies between household members. This oversight leads to biased simulations of activity-travel
schedules, as household members’ schedules are interdependent. Addressing this, earlier we have
proposed an operational utility-based scheduling framework, capturing multiple intra-household
interactions within a single ABMs, accommodating complex interactions such as allocation of pri-
vate vehicle to household members, escort duties, joint participation in activities, and sharing rides
(Rezvany et al., 2023).

Model calibration in utility-based ABMs is challenging due to limited data in traditional surveys
like travel diaries, which focus on revealed preferences without illuminating the complete choice
set of alternatives. The choice set of alternatives is typically latent or unobservable to the analyst.
Defining a choice set representative of activity-travel patterns in household activity pattern prob-
lem is thus, necessary for operationalising household random utility models.

Xu et al. (2017) develop a choice set generation technique for Household activity pattern problem
(HAPP) (Recker, 1995) using a clustering approach developed by Allahviranloo et al. (2014) to
identify representative patterns, optimised for information gain. Shakeel et al. (2022) model poten-
tial joint leisure activities within households using a latent class model, underscoring the need for
further research in joint activity generation and integration into operational activity-based models.

Applying Metropolis-Hastings algorithm to sample alternatives in an activity-based context has
been explored in the literature (Pougala et al., 2021; Danalet & Bierlaire, 2015). Considering their
promising results, we explore this approach to expand it to a household-level choice set generation
in ABMs.

2 Methodology

We propose a household-level choice set generation technique to estimate the parameters of the
utility-based household scheduling model presented in Rezvany et al. (2023). For explanation and
formulations of the household-level scheduling framework, we refer the reader to (Rezvany et al.,
2023). To explore the combinatorial solution space of full set of feasible schedules, a Metropolis-
Hastings algorithm is used. This functionality adopts the Metropolis-Hastings based sampling
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algorithm introduced by Pougala et al. (2021). In the remainder of this section, we first give
a brief synopsis of the base Metropolis-Hastings based sampling strategy and then present the
household-level choice set formation framework for model estimation.

Base Metropolis-Hastings based sampling strategy: A brief synopsis

This is a strategy to generate a choice set containing only feasible alternatives that can be used
for estimating parameters of a utility-based activity-based model. The alternatives for each indi-
vidual are full daily schedules. Using a strategic generation with Metropolis-Hastings algorithm,
it generates an ensemble of high probability schedules, to estimate significant and meaningful pa-
rameters, while still containing low probability alternatives to decrease the model bias. The choice
set generation is modelled as a Markov process. The algorithm is initialised with with a random
schedule (e.g. the reported schedule in the diary dataset can be used as the initial state). States are
defined as daily schedules with choice dimensions such as activity participation, timings, location,
and transportation mode. The choice set is generated by exploring the neighbouring schedules
of each state using operators with a known probability, and accept or reject the change based on
an acceptance probability defined by the modeller. Operators are heuristics that modify specific
aspects of the schedule and can be created according to the modeller’s needs and specifications.
Block, Assign, Swap, and Anchor are example operators, which their description can be found in
(Pougala et al., 2021). A set of validity constraints should be checked for the generated states to
ensure choice set only contains feasible schedules. The process is carried until the defined Markov
chain reaches stationarity.

In order to obtain unbiased parameters using a smaller subset of alternatives, an alternative specific
correction term is added in the choice probabilities. Cn is the generated choice set for individual
n. Thus, the probability that an individual n chooses alternative in ∈ Cn, associated with a de-
terministic utility Vin, is defined as follows (Ben-Akiva & Lerman, 1985):

P (in|Cn) =
exp [Vin + ln q(Cn|in)]∑

j∈Cn
exp [Vjn + ln q(Cn|j)]

(1)

in which lnq(Cn|in) is the alternative specific correction term defined as:

q(Cn|in) =
1

qin

∏
j∈Cn

 ∑
j∈Cn

qjn

J+1−Ĵ

(2)

where Cn is choice set of size J + 1 with Ĵ unique alternatives for individual n. j represents
alternative sampled from the target distribution of the Metropolis-Hastings algorithm with prob-
ability qjn. This formulation implies that if all alternatives have equal selection probabilities, the
estimation on the subset is the same as the estimation on the full set of alternatives.

A detailed explanation of the Metropolis-Hastings sampling strategy can be found in (Pougala et
al., 2021).

Household-level choice set generation and parameter estimation

Intra-household interactions affect how members schedule their day. Causing additional choice
dimensions, time arrangements, constraints, and group decision-making mechanism which should
be considered in the generated choice set for more behaviourally realistic estimations. The main
aspects are summarised as follows.

Firstly, the choice set of all individuals in a household should be generated in parallel, as they
are inter-related. This is a key matter in household-level choice-set formation differing it from
the individual-level approach. The relation between individuals and their household is lost in
individual-level choice-set formations, leading to separate choice set formation procedures with no
feedback between them. In our framework, as an output, a sample containing clusters of schedules
for all individuals in a household is generated, satisfying intra-household validity constraints. This
approach leads to more complexities in the generation model. An individual is selected in each
household as index. At each step of the random walk, their combinatorial solution space is explored
using the Metropolis-Hastings algorithm. Their state is then used as the benchmark for ensuring
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schedule synchronisations with other agents in the household. This ensures compatibility between
the generated schedules for individuals in the household at each step.

Secondly, in terms of capturing household interactions, we move from individual utility function
to household utility function where the individual sub-utilities are aggregated. The household
utility is defined as the weighted sum of the utility that each agent n in the household of size Nm

gains from her/his schedule over the considered time period. The weights wn, capture the relative
"power" of each individual in the household-oriented decisions.

HUF =

n=Nm∑
n=1

wn Un (3)

Moreover, we ensure that the possible interaction aspects are captured in the utility function such
as terms to capture motivations for joint engagements and (dis)utility of doing an escorting task.

Third, the operators must generate a state that meets the household-level constraints, as well as
individual-level schedule validity constraints. As the within-household interactions lead to addi-
tional and more complex constraints, these interplays must be also accounted for in the generated
choice set. Resource constraints, sharing household maintenance responsibilities, joint activity
participation, joint travels, and escorting are examples of intra-household interactions.

Furthermore, new operators are introduced to modify choice dimension aspects related to house-
hold scheduling, such as activity participation mode. We define partic_mode operator ωpartic_mode
to change the participation mode pan

of a randomly selected activity an for individual n, with a
given probability Ppartic_mode. The modes are chosen from a set of possible activity participation
modes which is considered known (e.g., solo or joint). The selection of a participation mode is done
according to distribution Pπ(an) which is conditional on the activity and assumed to be exogenous
to the choice-set generation. This operator can only be applied to activities that can have multiple
participation modes defined by the modeller.

In case of change in participation mode, the schedule synchronisation among agents in the house-
hold is checked and the corresponding activity is planned in the schedule of accompanying mem-
ber(s) with the same timings and participation mode. To respect validity requirements, the result-
ing schedule must always start and end at home and the participation mode of home cannot be
changed. The transition probability associated to this change is defined as the product of proba-
bility of this operator to be chosen multiplied by the probability of choosing a valid block and the
probability of selecting one of the possible participation modes. This can be written as follows:

Q(Xt|Xt−1) = Q(Xt−1|Xt) =

{
Ppartic_modePπ

T−2δ
Tδ , if bi /∈ {bo, bT }

0 otherwise
(4)

where Xt and Xt−1 are the state at time t and t − 1, respectively. Each state corresponds to
a schedule within the considered time budget T (e.g., 24 hours) and is discretised into blocks of
length δ. bp is a block at position p, p = (0, δ, ..., T − δ, T ).

3 Empirical investigation

The data from the 2018 − 2019 UK National Travel Survey (NTS) (Department for Transport,
2022) is used for generating choice sets for households and estimating parameters of the ABMs
model (Rezvany et al., 2023). NTS is a household survey containing information on daily trips and
socio-economic characteristics of individuals in a household within the UK. Using the Metropolis-
Hastings algorithm to generate the choice sets, we estimate the parameters of a sample of schedules
for 2-membered households of 2 adults. The 2018 − 2019 version of the data contains 4′802 indi-
viduals, belonging to 2′401 households of size 2 with 2 adults, and 22′698 trip diaries.

First we process the data to convert the trip diaries to daily activity schedules. Data points with
missing information are excluded. For this case study, a sample of schedules for 500 households is
used. We group the activities into 6 categories: Home, Work, Education, Leisure, Shopping, and
Personal business (eg. eat/drink, using services like medical appointments).
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The mean of start times and durations for each activity from the distribution across the households
of 2 adults are assumed as indicators for desired start and duration times in the model (Table 1).
The scheduling preferences are assumed to be homogeneous across the individuals. For identifi-
cation purposes, ’Home’ is used as reference. Home is interpreted as absence of activity in this
study due to absence of information on in-home activities in the dataset, which can be relaxed
with richer data containing in-home activities such as time use surveys. For the sake of simplifi-
cation, travel parameters are not estimated to focus solely on activity scheduling parameters. We
generate choice sets of size N = 100 for each household using the Metropolis-Hastings algorithm.
We consider Block, Assign, Swap, Anchor, Partic_mode, and Combination Meta-operators for the
random walk. The operators have equal probability of being selected.

Table 1: Scheduling preferences

Activity Desired start time [hh:mm] Desired duration[hh:mm]
Work 09:15 06:55

Education 10:30 5:10
Leisure 12:48 02:50

Shopping 12:35 01:05
Personal business 12:20 01:10

As we study interactions within household members, activity participation modes (solo/joint) are
extracted from the data, using a set of rules inspired by Ho & Mulley (2013) for identifying joint
participation within household. Analyzing diaries in NTS, we observe that only 0.1% of activities
in diaries are performed jointly (Figure 1a). Among which Leisure activities make a substantial
portion (97%) of joint activities (Figure 1b). Thus, we only consider Leisure activities to have the
possibility to be done jointly in our choice set generation.

(a) Share of activity participation modes (b) Share of activity types with joint participa-
tion

Figure 1: Analysis of activity participation modes in NTS data

Generated choice set: analysis and discussions

We run 1000 iterations of the algorithm for a sample of 500 households of 2 adults, generating choice
sets of sizes N = 100 alternatives for each household. The accepted schedules are sampled after a
warm-up period. Figure 2 depicts the distribution of activity participation across different hours of
the day for each activity type in the generated sample. The distributions are sensible according to
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Distribution of activity participation across different hours of day in generated
choice sets

expectations. Home activity has a peak at midnight which aligns with the common resting period.
It declines sharply as people typically begin their day and participate in out-of-home activities,
with a gradual increase towards the evening suggesting return to home after the daily activities.
Figure 2b indicates distinct peak activity times for work with concentrated density during typical
office hours. Leisure have a more spread-out pattern, reflecting more scheduling flexibility and less
constrained feasible activity hours throughout the day.

We take a closer look at the impact of each operator on acceptance of a generated schedule. Figure
3 illustrates the proportion of operators among accepted moves. In this case study, Block and
Assign are the most frequently used operators, followed by Swap and Partic_mode. The Block
operator only modifies the time discretisation, which thus does not affect the schedule validity,
leading to feasible new states. Moreover, frequent application of Assign operator is also expected.
Adding activities is favourable in terms of utility gain as the constant utility gain for participating
in activities is usually larger in scale than the penalties for schedule deviations. The lower pro-
portion of use for partic_mode operator makes sense. When changing the activity participation
mode, household schedule synchronisation validity constraints can be obviated. Thus, partic_mode
operator has a lower proportion in accepted schedules. Figure 4 shows the typology of combina-
tion of Meta-operators in accepted schedules, illustrating the prevalence of each operator in the
accepted Meta-operator combinations (Figure 4b) and the distribution of their lengths (Figure 4a).
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Figure 3: Frequency of accepted operator changes

(a) Lengths of combinations for MetaOp-
erators

(b) Frequency of pairs in Meta-operators

Figure 4: Typology of accepted combinations of Meta-operators

Estimation results and discussions

Using the generated choice set, the scheduling model has been estimated. The attributes used
in the model are related to the activity-specific constants and parameters, as well as scheduling
deviation penalties. Table 2 summarises the estimation results.

The estimated parameters are behaviourally sensible. The activity-specific constants are all pos-
itive, indicating a baseline preference for doing an out-of-home activity rather than staying at
home, all else being equal. Shopping activities bring the most utility per time unit followed by
Personal business, Work, and Leisure activities. Most of the parameter estimates are statistically
significant (p− value < 0.05). The estimates with 0 p-value are indicative of parameters that are
highly statistically significant predictors in the model. However, there are example parameters
that are not statistically significant such as parameters associated with duration of leisure. This
can indicate that leisure is not a particularly time constraining activity, in the sense that it is less
likely to trigger trade-offs in the scheduling process compared to other activities.

The estimated joint participation parameter for leisure is significant and positive. This indicates
that doing leisure activities with other household member(s) is strongly preferred, highlighting the
social aspect of leisure time. Joint participation in activities can be motivated by considerations
such as (i) efficiency; which can be gained from time and/or money savings, (ii) altruism, which is
a selfless regard in which an individual gains utility by benefiting someone other than oneself, and
(iii) companionship.

The penalty parameters have a negative sign, indicating a decline in utility when deviating from
their preference. For example the significant negative coefficient for shopping later than preferred
suggests individuals find less utility in shopping activities that occur later than their preferred
timing, possibly due to increased crowds, reduced availability of items, or personal schedule con-
straints. Shorter durations than expected are penalised about 3 times more than longer for work
activity. The negative and significant estimate for shorter work activities than preferred may reflect
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Table 2: Estimation results

Parameter Param. estimate Rob. std err Rob. t-stat Rob. p-value

Leisure: ASC 2.26 0.0874 8.71 0
Leisure: joint_partic 0.259 8.71 -1.84 0
Leisure: early -0.778 0.0874 -8.9 0
Leisure: late -0.737 0.0857 -8.6 0
Leisure: long 0.0095 0.0227 -0.416 0.677*

Leisure: short -0.14 0.216 0.648 0.517*

Personal business: ASC 4.8 0.682 7.03 2.01e-12
Personal business: early -0.96 0.113 -8.51 0
Personal business: late -0.775 0.0977 -7.93 2.22e-15
Personal business: long -0.547 0.165 -3.31 0.000944
Personal business: short -1.5 0.507 -2.95 0.00316
Shopping: ASC 7.45 0.944 7.89 2.89e-15
Shopping: early -1.23 0.166 -7.43 1.09e-13
Shopping: late -0.697 0.0927 -7.52 5.28e-14
Shopping: long -0.803 0.165 -4.88 1.08e-06
Shopping: short -3.43 0.789 -4.35 1.36e-05
Education: ASC 1.38 1.07 1.29 8.15e-04
Education: early -2.36 0.58 -4.06 3.02e-02
Education: late -0.399 0.174 -2.29 4.24e-02
Education: long -2.44 0.989 -2.47 1.44e-03
Education: short -1.52 0.257 -5.88 1.36e-05
Work: ASC 4.28 0.476 8.99 0
Work: early -0.828 0.108 -7.68 1.58e-14
Work: late -0.45 0.0975 -4.62 3.92e-06
Work: long -0.272 0.0438 -6.22 5.03e-10
Work: short -0.828 0.13 -6.39 1.7e-10

Summary of statistics
L(0) = -282.4367
L(β̂) = -199.3681
* Not statistically significant at 95%

the disutility associated with not fulfilling expected work hours, which could impact productivity
or income. Furthermore, the improvement in log-likelihood from null log-likelihood signifies that
the model’s estimated parameters provide a better fit to the observed choices than a model without
predictors.

4 Conclusions

This paper discusses implementation requirements for ABMs with intra-household interactions and
presents a household-level choice set generation. We build on the Metropolis-Hastings based sam-
pling algorithm developed by Pougala et al. (2021). The important aspects in household choice-set
generation can be summarised as: (i) the choice set for individuals in a household are generated in
parallel, as they are inter-related, (ii) we move from individual utility function to household utility
function, (iii) possible interaction aspects are captured in the utility function. (iv) new operators
are introduced to modify choice dimension aspects related to household scheduling, (v) the accepted
schedules should remain compliant with household-level constraints, in addition to individual-level
validity constraints. This approach can generate an ensemble of high probability schedules, to
estimate significant and meaningful parameters, while still containing low probability alternatives
to decrease the model bias. Utilising the choice set generation technique, the parameters of a
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utility-based ABMs, household-level OASIS, (Rezvany et al., 2023) is estimated. The results are
both behaviourally sensible and statistically significant.

There are further extensions and improvements of the current work, suggesting paths for future
research. The scheduling preferences are assumed to be homogeneous across the sample. Investi-
gating non-homogeneous preferences across individuals can be considered. In the current specifi-
cation, socio-demographic variations are not considered. In order to investigate more behavioural
implications explaining the choice of schedules, socio-demographic variables can be also added in
the proposed framework and utility functions. Considering interactions between household demo-
graphic variables (e.g. as presence of children, family structure, work characteristics of individuals)
and activity participation utility variables is another interesting avenue. Furthermore, exploration
of validation techniques can be considered. Validating the approach by estimating parameters with
the sampled choice set and measuring their bias with metrics such as the mean absolute error is a
possible approach (Lemp & Kockelman, 2012).
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