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Short summary

This paper proposes a novel framework for evaluating the reliability of synthetic population gen-
eration in agent-based transportation simulations (ABM-TOS). Our methodology categorizes key
parameters into distinct categories, including sociodemographic attributes, household features, and
travel patterns, to test them against the real data for a comprehensive validation of the generated
population. The framework’s effectiveness is demonstrated by generating synthetic populations
of varying sizes, representing 1% to 30% of Luxembourg’s 2021 population. The study showcases
the importance of accurate population synthesis in ABM-TOS and highlights potential areas for
improvement in future research.
Keywords: agent-based modeling, MATSim, mobility transportation simulation, population syn-
thesis, population generation.

1 Introduction

Agent-based models (ABM) applied in the transportation domain rely strongly on the correct
generation of the travel demand, which is represented by a synthetic population of households and
individuals characterized by sociodemographic attributes and daily activity patterns that at best
reflect the real population in an area of study. The reliability of the synthetic population generation
(SPG) process is critical in ABM simulations, which have been extensively used in different research
domains beyond transportation (Hörl & Balac (2021); Anderson & van Der Merwe (2021); Coelho
et al. (2021); ODonoghue et al. (2013)).
Focusing on ABM for transportation-oriented simulations (ABM-TOS), the population synthesis
operation generates the input demand for the simulation environments, a fundamental step for any
research investigation. This process usually involves the generation of individual-level data that
accurately reflects the demographic and socio-economic characteristics of a given population, as
well as information regarding their travel mobility patterns. These synthetic populations are then
used to simulate various aspects of urban mobility, including travel behavior and transportation
infrastructure use. These processes can generally be divided into two stages: fitting and generation
(Müller & Axhausen (2010); Farooq et al. (2013)). While the fitting stage deals with the adjustment
of an initial distribution to match known marginal distributions, the generation stage involves
creating synthetic individuals from these distributions (Tanton (2013)).
Usually two types of data sources can be gathered for generating a synthesized population: publicly
available data and travel surveys (Farooq et al. (2013)). These data are usually associated with
spatial zoning and can be found in the form of individual agent samples and cross-classification
tables.
One of the primary obstacles is the unavailability of complete data for the population that one wants
to achieve, which can lead to inaccurate models and simulate spatially-dependent phenomena. To
overcome this problem, multiple techniques have been applied to this topic, which are explained
further in Section 2. The goal of these methods is to extract the underlying picture from the
available data and generate a population that shares as much as possible the same characteristics as
the real one. Nonetheless, even if the distribution matches the real data, there is no guarantee that
the population reflects reality in its entirety. This paper presents a new framework for population
synthesis in agent-based traffic model simulations (ABM-TOS), addressing literature gaps. It
includes:
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• A novel general framework for evaluating key distributions in ABM-TOS;

• A tool for assessing synthetic population quality and ’debugging’ eventual inaccuracies;

• The introduction of MOBIUS, a new synthesizer demonstrated in the Luxembourg Scenario.

The remainder of this paper is organized as follows. In Section 2, we present a small literature
review, analysing different population synthesizer, underlining the absence of a no generalized
comprehensive framework for analyzing the synthetic population. Section 3, we delve into each
category of framework. In Section 4 we present the case study for MOBIUS, a novel population
synthesizer, and the results of the application of the framework to the 3 synthesized populations,
together with the detailed categorization choice. Finally, Section 5 concludes the paper and presents
the next step of the research.

2 Literature review

In this section, we present the literature regarding different methodologies and techniques widely
used in population synthesis for different ABM simulations, namely Iterative Proportional Fitting
(IPF ) approach, Markov Chain Monte Carlo (MCMC ) methods, and the use of Machine Learning
(ML) models, together with some of the different population synthesizers that use one of the
above-mentioned techniques. The Iterative Proportional Fitting (IPF) has been first described by
Deming (et al. Deming & Stephan (1940)) and is also known as matrix ranking, RAS method, or
matrix scaling. The strength of IPF (Arentze et al. (2007); Durán-Heras et al. (2018)) lies in its
ability to preserve the relationships between different attributes in the data while ensuring that
the synthetic population aligns with known marginal distributions. An example of the use of IPF
methodology can be found in the work of Horl et al. (Hörl & Balac (2021)), which presented a
methodology for generating synthetic travel demand using IPF algorithm and open and publicly
available data for Paris. Another example comes from Tozluoglu et al. (Tozluoğlu et al. (2022)),
which presents the documentation for their population synthesizer, Synthetic Sweden Mobility
(SySMo). Another popular approach is through Markov Chain Monte Carlo (MCMC) methods.
These are a class of algorithms used in computational statistics for sampling from a probability
distribution (Geyer (2011)). MCMC methods work by constructing a Markov chain that has the
desired distribution as its equilibrium to the reference distribution. MCMC methods have seen
an increase in popularity due to their robustness in handling complex probabilistic models, given
their ability to capture the relationship between multi-dimensional data spaces, and correctly
reproducing the underlying distributions of the provided data. Farooq et al. (Farooq et al. (2013))
propose a Markov Chain Monte Carlo simulation-based approach for synthesizing populations for
use in urban systems evolution microsimulations. Finally, Machine Learning (ML) models are
starting to see an increase in population synthesis processes, proposing interesting methodologies
given their capability of reproducing complicated distributions underlying the input data. Berke
et al. (Berke et al. (2022)) present a framework for generating synthetic mobility data using a
deep recurrent neural network (RNN) trained on real location data. The issue with the population
synthesizers provided in the literature is that they do not all offer a structured analysis for assessing
the quality of the generated population for use in ABM-TOS. To systematically analyze these
existing methods, we propose a framework that classifies different types of distributions that are
important for any ABM-TOS. This framework includes the following categories, which are further
explained in Section 3:

• Basic Sociodemographic Attributes (BSA)

• Household Attributes (HA)

• Advanced Sociodemographic Distributions (ASBD)

• Tripchain Related Distributions (TRPD)

• Distance Related Distributions (DRD)

• Time-Related Distributions (TRD)

• Mode Related Distributions (MRD)

In applying our framework to a broad range of existing studies (Tozluoğlu et al. (2022); Agriesti
et al. (2021); Beckman et al. (1996); Jain et al. (2015); Hörl & Balac (2021); Farooq et al. (2013);
Felbermair et al. (2020); Sun & Erath (2015); Garrido et al. (2020); Berke et al. (2022); Badu-Marfo
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et al. (2020); Arkangil et al. (2022) and the majority of MATSim scenarios presented in Horni et
al. (2016)), we aim to highlight the gaps and inconsistencies in current methods. The analysis is
presented in Figure 1.

(a) (b)

Figure 1: (a) Literature validation results classified; (b) MATSim scenarios validation
results classified.

Figures 1a and 1b reveal shortcomings in validation analyses for agent-based models (ABM). Most
literature, as shown in Figure 1a, focuses on BSA and HA metrics, often neglecting TRD and
MRD due to varied objectives of population synthesizers, data exclusion, and post-simulation
calculations. In Figure 1b’s analysis of ABM-TOS scenarios, with the exclusion of the Belgium
scenario, most fail to address key mobility-related distributions (DRD, TRD, MRD), with all the
papers omitting analysis regarding the TRD and TRPD distributions. This gap in comprehensive
evaluation can lead to inaccuracies in representing population characteristics or behaviors in ABM
simulations. To address this, we propose a framework designed to analyze a large set of different
distributions that are crucial for mobility simulations.

3 Methodology

What emerges from the literature is the lack of a structured and comprehensive methodology
for assessing the performance of population synthesis. This gap motivates our proposal for a
new framework designed to analyze all the different distributions that are crucial for mobility
simulations.
For our methodological framework, we decided to group the different parameters usually analyzed
into different categories, together with new distributions extracted from the literature, that proved
to have an impact on the ABM and ABM-TOS. This is presented in Table 1
For further explanation of the categories (please refer to Bigi et al. (2024)). To quantify the
reliability of each parameter, we propose using metrics capable of assessing the similarity of different
variable distributions. For our specific analysis, the Hellinger distance, the NRMSE, and the JS
divergence were chosen to compare the generated distributions with the reference ones.
The Hellinger distance (Kitsos & Toulias (2017)) is commonly used in statistics and information
theory to measure the similarity between two probability distributions and is computed as follows:

H(P,Q) =

√√√√1

2

n∑
i=1

(
√
pi −

√
qi)2 (1)

where P and Q are the two probability distributions being compared, n is the number of values
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Category Description Key Ref-
erences

Examples

Basic Sociode-
mographic At-
tributes (BSA)

Fundamental sociode-
mographic parameters.

Hanson
& Hanson
(1981)

Gender distribu-
tion, age.

Household At-
tributes (HA)

Household interactions
and characteristics.

Bradley
& Vovsha
(2005), Hu
et al. (2023)

Household loca-
tion, car owner-
ship allocation.

Advanced So-
ciodemographic
Distributions
(ASBD)

Bivariate distributions
combining BSA and
HA.

- Age-household
size, age-gender,
gender-household
size

Trip-chain Re-
lated Distribu-
tions (TRPD)

Critical for modeling se-
quences of activities and
travel events.

Scheffer et
al. (2021)

Activity type, Ac-
tivity location

Distance-Related
Distributions
(DRD)

Distance-based KPIs for
the population.

- Total distance
traveled, home-
primary activity
distance

Time-Related
Distributions
(TRD)

Time-based KPIs for
the activity of the pop-
ulation.

- Duration for
primary and sec-
ondary activities,
activity start
times

Mode-Related
Distributions
(MRD)

KPIs for transportation
options and usage pat-
terns.

- Total distance
traveled per
mode, modal split

Table 1: Table describing the different categories to analyze
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in the distributions, and pi and qi are the values at the ith index of P and Q, respectively. This
metric was chosen mostly because of its sensitivity to variations in the shape of the distributions.
The Normalized Root Mean Square Error (NRMSE) was chosen as a second metric to evaluate the
difference in magnitude of the selected distributions. As for the Hellinger distance, it is a measure
used for assessing the similarity between two probability distributions, and is defined as follows:

NRMSE =
1

N

√√√√ N∑
i=1

(
yi − ŷi

ymax − ymin

)2

(2)

where yi and ŷi represent the observed and estimated values, respectively, ymax and ymin are the
maximum and minimum observed values, and N is the total number of observations.
To finalize our analysis with a metric to evaluate the goodness of fit of each distribution, we
chose to add to our evaluation methodology the Jensen-Shannon (JS) divergence (Hoyos-Osorio &
Sanchez Giraldo (2023)). The JS divergence is defined as the mean of the Kullback-Leibler (KL)
divergence (Joyce (2011)) of P from the average distribution M, and the KL divergence of Q from
M, where P and Q are the two probability distributions in comparison.

JSD(P,Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (3)

One of the reasons behind choosing these three statistical metrics over others lies in their collec-
tive ability to analyze the distributions from different angles. By pairing them, we can assess the
error in the magnitude of the generated distributions through NRMSE, the shape via the Hellinger
distance, and the overall fit with the JS divergence. Table 2 serves as an example decision ma-
trix, summarizing the implications of various combinations of these three metrics and suggesting
corresponding actions to adjust the statistical analysis of distributions.

NRMSE Hellinger JS Divergence Interpretation Suggested Action
High High High Significant divergence Re-evaluate model assump-

tions and data sources.
High High Low Shape of distributions is off Consider transformations or

alternative models.
High Low High Magnitude discrepancies Check for errors in data or

scale mismatches.
High Low Low Magnitude is overestimated Adjust model to reduce esti-

mation errors.
Low High High Good magnitude but poor fit Refine model to better cap-

ture distribution shapes.
Low High Low Minor shape discrepancies May require slight model ad-

justments.
Low Low High Good fit with misalignment Fine-tune model parameters.
Low Low Low Well-aligned distributions Validate with additional data

if possible.

Table 2: Decision Matrix for Statistical Analysis of Distributions

Moreover, having these three metrics bounded between 0 and 1 means that they can be somewhat
comparable. When visualized within a heatmap, as seen in Section 54, Figure 2, they can pro-
vide a fast and intuitive way to understand the state of the overall population. Furthermore, it
helps identify critical areas, connecting apparent unrelated problems, through a global view of the
generated data.

4 Case Study and Results

In this section, the process of generating the synthetic population is discussed using data from
the Luxmobil Survey 2017 in Luxembourg. Conducted by the Ministry of Mobility and Public
Works, the survey included 40,000 residents and 45,000 cross-border workers, with a response rate
of 30%, ensuring representative and unbiased results. Approximately 35,000 valid responses were
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obtained and, after cleaning, approximately 22,000 responses were retained, representing 2.8% of
daily travellers. The survey provided a zoning structure at the administrative unit level with 150
different zones. Respondents reported daily trips and modes of transport in travel diaries, along
with socio-demographic information. From the travel survey, we extracted the following data for
this analysis:

• spatial distribution with zonal information, with related facilities location file;

• zonal household and population distribution categorized by the considered attributes;

• zonal trip chain distribution;

• OD matrices per hour, which we computed from the Luxmobil travel survey and validated
through PTV Visum;

• zonal distribution of typical activity time duration and departure time for the first activity;

Algorithm 1 MOBIUS Assignment Loop
1: for each agent ai to generate do
2: Initialize Ti, tripchain of ai, and timecurr, current time
3: for each act ∈ Ti, with act as single activity in the Tripchain do
4: if act is the first activity then
5: Assign Tdep, departure time from home, set it as timecurr
6: Estimate Mode of transport and travel time to get ttmode

7: Update timecurr+ = ttmode

8: else
9: Assign location for act through the OD matrix sampling, let the location be

zdest
10: Sample tact, activity duration from distribution of duration of activity in

zdest
11: Estimate Mode of transport and travel time to get ttmode

12: Update timecurr+ = ttmode + tact
13: end if
14: end for
15: end for
16: Return ai with act ∈ Ti assigned with times and locations.

The novel population synthesizer, MOBIUS (Mobility Optimization Based on Iterative User Syn-
thesis), was developed by gathering and scaling data to match the target population. Its macrostruc-
ture has been inspired by two state-of-the-art synthesizers (presented in Tozluoğlu et al. (2022) and
Hörl & Balac (2021)), respectively. It differs from them in its approach to creating households with
attributes like zone, car ownership, and composition size, enhancing attribute inheritance, control,
and code efficiency. For each household, agents are generated with attributes appropriate to their
age group. The activity generation phase assigns trip chains to agents, using the top 25 chains to
eliminate outliers. Location assignments are based on an OD probability matrix, considering time
and activity type, with home locations determined by a bounding box approach. Activity desti-
nations are assigned precisely through additional sampling, and leg modes are initially estimated
by beeline distance, then fine-tuned using MATSim simulation. The complete process is detailed
in Algorithm 1, explaining the synthetic population generation loop.
The MOBIUS synthesizer was applied by generating three synthetic populations representing 1%
( 6,454 individuals), 10% ( 64,539 individuals), and 30% ( 193,617 individuals) of Luxembourg’s
total 2021 population (approximately 645,390), including resident and cross-border data. Each
population size underwent MATSim simulations until equilibrium, determined by modal split align-
ment over 150 iterations. Further calibration using Cadyts (Chen (2012)) for 300 iterations has
been performed, based on 21 traffic counts from October 2021, covering about 30% of total traffic
in the dataset. Road capacities were adjusted to align with observed volume-to-capacity ratios.
The varying population sizes were chosen to observe metrics convergence, like age distribution
errors reducing with sample growth, and to identify areas needing analysis if errors persist.

6



The results of this analysis, applied to the above-mentioned populations and adopting the three
metrics described in the previous section, are summarized in Figure 2, with the chosen metrics for
each category presented in Table 3.

Figure 2: Results for the 1%,10% and 30% Luxembourg generated population.

Category Chosen Metrics
Basic Socio-demographic At-
tributes (BSA)

Error in age and gender distribution

Household Attributes (HA) Distribution of household attributes across
zones

Advanced Sociodemographic
Distribution (ASBD)

OD pair assignment for workers/students
(home-work/school) at zonal level

Tripchain Related Distribu-
tions (TRPD)

Trip chain assignment for adult cross-
border commuters and residents

Distance Related Distribu-
tions (DRD)

Beeline school and work distance distribu-
tion

Time-Related Distributions
(TRD)

Primary activity duration for workers and
students

Mode Related Distributions
(MRD)

Distribution for primary activity, car and
public transport distance distributions

Table 3: Chosen metrics for each category

In the study, most metrics showed trends that were either stable or decreased as the synthesized
population size increased. This aligns with expectations and indicates the categories and metric’s
sensitivity in identifying issues in distribution generation. Specifically, the decreasing NRMSE and
JS, along with the stable Hellinger distance in the age category, suggest more alignment between
reference and generated distributions as population size grows, despite differences in distribution
shapes.
The MOBIUS synthesizer, particularly for Basic Socio-demographic Attributes (BSA) and House-
hold Attributes (HA), performed as expected due to the high number of controlled variables. For
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instance, NRMSE for school distance metrics decreased with larger populations, explained by the
limited number of schools causing greater discrepancies in smaller samples, which is again expected.
On the other hand, worker distance and arrival zone metrics showed stable trends, not significantly
improving with larger populations. This could be due to the random sampling in OD segmentation
within MOBIUS, where misalignment in departure times can affect agent assignment accuracy.
Moreover, the Mode-Related Distributions (MRD) parameters, particularly mode distribution to
work, car distance, and public transport distance, showed significant discrepancies, potentially
due to inaccuracies in route estimations and OD-matrix assignment. Calibration with Cadyts
in MATSim simulations did not resolve these discrepancies. Furthermore, worker start time and
activity duration metrics remained stable across different population sizes, suggesting potential
initial estimation inaccuracies and highlighting a limitation of the OD-matrix sampling method.

5 Conclusion

The study highlights the capability of the proposed framework to detect inconsistencies in the
distribution of synthetic population parameters. It reveals that for our case study, while the
proportion of the generated population affects marginally the accuracy of basic sociodemographic
and household attributes, it significantly influences the distributions related to travel distances
and times. Even with increased population sizes, notable differences persist in distance by mode
and activity duration. This suggests that population synthesizers need improvement, particularly
in accurately matching agents to activity locations and optimizing trip-chaining decisions, to more
closely replicate observed daily activity-travel patterns.
For agent-based models, generating a high-quality synthetic population necessitates a strategic
selection and balancing of control variables. This is vital to ensure that these variables, while
generalizing from real data, maintain reliability. This becomes increasingly crucial when these
variables are used to derive further distributions, as accurate alignment with real-world data is
essential to support model validity and prevent bias. Enhancements in population synthesis, such
as those demonstrated by MOBIUS in modal split and travel time, are key to avoiding overfit-
ting and ensuring generality, which allows population expansion and proper analysis. Tools that
specialize in complex aspects like routing and traffic conditions are indispensable, as they simplify
the modeling process and increase accuracy. Given data limitations, careful consideration is re-
quired when excluding or inferring missing data to avoid compounding errors. Adhering to these
principles markedly boosts the dependability of the population synthesizer, thereby improving the
effectiveness of transportation-focused agent-based simulations.
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