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SHORT SUMMARY 

This work addresses the challenges in specifying utility functions for discrete choice models 
(DCMs), which are essential in understanding and forecasting travel behavior. Traditionally, util-
ity functions are manually specified by modelers through a subjective process, based on intuition 
and experience. While this approach benefits from maintaining an analytical form for easy inter-
pretation, it suffers from inconsistency and potential inaccuracies due to the lack of a systematic 
framework. To overcome these limitations, this study proposes a method that combines machine 
learning’s automation with the interpretability of analytical forms using grammar. The goal is to 
develop an automated approach for defining variables, transformations, and interactions in utility 
specification, while ensuring alignment with domain knowledge. This leads to analytically ex-
pressive and interpretable utility functions for DCMs. The proposed framework’s potential is 
demonstrated through a case study. 
 
Keywords: Discrete choice models, grammar, grammatical evolution, utility function 
specification, domain knowledge 

1. INTRODUCTION 

Traditional utility function specification in discrete choice models (DCMs) is performed through 
a subjective trial-and-error process, relying on the modeler’s expertise. While this method keeps 
utility functions in an analytical form for easier parameter interpretation, it lacks consistency and 
does not systematically integrate domain knowledge. Incorrect specifications can lead to biased 
parameter estimates and predictions (Torres et al., 2011, Kling, 1989). 
 
To address this, several methods have been proposed for utility specification assistance, like com-
binatorial optimization (Ortelli et al., 2021), bayesian framework for feature selection (Rodrigues 
et al., 2020), gradient boosting trees ensemble (Hillel et al., 2019), and simulated annealing for 
mixed logit models (Paz et al., 2019). While these studies assist in variable selection and trans-
formation, they either do not consider possible high-order interactions, time-consuming, or lack 
domain knowledge integration. 
 
This work aims to systematically assist modelers in DCM utility function specification by merg-
ing machine learning automation with interpretability and domain knowledge, using grammar-
based methods. The objective is to develop a framework for automatic definition of variables, 
transformations, and interactions in utility specifications, while ensuring alignment with domain 
knowledge. The resulting utility functions maintain analytical clarity for straightforward interpre-
tation. 
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2. METHODOLOGY 

This section introduces the proposed methodology aimed at assisting modelers in the specification 
of utility functions in DCMs. Central to this methodology is the application of grammatical con-
cepts, derived from computational linguistics, to systematically define utility function specifica-
tions. This approach provides the modelers with a structured, systematic framework that eases the 
specification process. 
 
The section begins by outlining the specification requirements based on domain knowledge dic-
tated by the modeler, followed by the presentation of the proposed grammar and its formulation. 
The overall framework is presented next, employing the grammatical evolution (GE) algorithm 
for optimal specification discovery. Next, the genetic operators of GE and the fitness evaluation 
process are briefly presented. 

Domain knowledge and specification requirements 

In this work, utility function specification considered requirements are categorized into two cate-
gories: grammar-encoded and post-estimation verified. 
 
Grammar-encoded requirements: 
 

1. Model identification and conventions: In choice models, only differences in utility mat-
ter (Train, 2009). With 𝐽 alternatives, only 𝐽 − 1 alternative-specific constants (ASCs) 
can be included, normalizing one ASC to zero for identification. The non-zero ASCs 
indicate relative preference.  
 
Socio-demographic variables, being consistent across alternatives, enter the utility of only 
𝐽 − 1 alternatives. To avoid the “dummy variable trap” in categorical variables, 𝐾 − 1 
categories are included using dummy coding, with one category as the base. 
 
When including interactions between a categorical socio-demographic variable and an 
alternative attribute in utility functions, it is crucial to include both the attribute and in-
teractions with 𝐾 − 1 categories. This approach captures the attribute’s total effect on 
utility for all, not just a specific category. It prevents misinterpretation (like implying no 
main effect) and biases in other model parameters, allowing direct comparison of inter-
action effects to the base category. 
 

2. Level of interactions: The choice of variable interaction levels balances capturing com-
plex relationships and keeping the model interpretable. The maximum allowed level of 
interaction can therefore be predefined to reflect complex effect without losing interpret-
ability. 
 

3. Adaptability in utility function specification: Specification adaptability serves differ-
ent data sets and research goals, depending on the modeler’s needs and expertise. It allows 
specific function specification for each alternative, or a generic specification for various 
alternatives. This adaptability is key for a wide range of choice scenarios, from individu-
alized choices like mode choice to scenarios with pronounced commonalities, such as 
route choice. 
 

4. Variable transformations: Dictates transformation types to align with empirical and 
theoretical understanding, like logarithmic for diminishing returns, power or linear. 
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Post-estimation verified requirements: 
 

1. Behavioral Constraints and Realism: The specification should not only fit the data, but 
also align with economic theory and behavioral understanding. Modeled preferences and 
decisions in utility functions must reflect realistic mode shares and usage, consistent with 
theory and reality. For instance, attribute effects like travel time and cost should reduce 
utility and choice probability. 

 
2. Parsimony: Parsimony in model specifications, aiming for simplicity without losing ex-

planatory power, offers several benefits. It reduces overfitting and simplifies interpreta-
tion. Often, statistical significance is a key indicator – variables that add complexity with-
out being significantly different from zero may be candidates for omission. However, 
variables that proxy unobserved effects can still provide useful explanatory value despite 
modest t-statistics. Model selection, using criteria like AIC or BIC, helps balance fit and 
complexity, ensuring theoretical consistency. The aim is a balanced, flexible model that 
accurately represents behaviors without unnecessary complexity. 

Proposed grammar 

Grammar is formulated in a Backus-Naur Form (BNF) format, defined as a tuple 𝐺 = (𝑁, 𝑇, 𝑅, 𝑆). 
Terminal symbols (𝑇) represent actual language elements like numbers or words, while non-ter-
minal symbols (𝑁) act as placeholders for rules, expanding into terminals, non-terminals, or their 
combinations. Production rules (𝑅) dictate further expansions of non-terminal symbols, defined 
in the form 𝐴 → 𝑎, where the left-hand side is a non-terminal 𝐴 ∈ 𝑁, while the right-hand side is 
a combination of non-terminals and terminals, 𝑎 ∈ (𝑁 ∪ 𝑇). The grammar starts from a non-ter-
minal symbol 𝑆 and recursively applies these rules for expression derivation, ending with only 
terminal symbols. 
 
The proposed grammar is shown in Figure 1. The starting symbol (S), decomposes into 𝐽 distinct 
utility functions for 𝐽 alternatives. Each utility function (Uj) expands to become either a single 
sub-expression (Ej) or include an additional sub-expression. Each sub-expression (Ej) expands to 
become either an interaction between the existing sub-expression and a transformed variable (Wj), 
or a transformed variable only. The interaction is determined by the operator (O), which can be 
either a multiplication or division. The transformed variable (Wj) is the variable (Vj) transformed 
by (F). Transformation (F) can be any allowed transformation specified by the modeler (e.g., 
linear, logarithmical, exponential, etc.). Variable (Vj) is determined by the set of variables avail-
able in the dataset. This design accommodates complex utility specifications and is flexible based 
on interaction levels and transformations guided by domain knowledge. 



4 
 

 
Figure 1. Proposed grammar 

Grammatical evolution framework 

Grammatical evolution (GE) combines grammar principles with evolutionary algorithms, offer-
ing structured and flexible solutions to complex problems (O’Neill & Ryan, 2001). GE, part of 
genetic programming, evolves language expressions and programs based on grammatical rules. 
It efficiently explores vast solution spaces through selection, crossover, and mutation processes. 
In GE, solutions are variable-length vectors or chromosomes of integer codons (Figure 2).  
 
The proposed GE framework in Figure 3 starts with randomly generated initial population of 
feasible individuals. Each individual, decoded using grammar, forms 𝐽 utility expressions for 
model specifications with non-estimated parameters. Fitness evaluation occurs in three stages: 
parameter estimation using training data, checking model’s alignment with domain knowledge, 
and assessing performance on the validation set. The process ends if termination criteria (like 
fitness convergence or generation limit) are met, yielding the best solution. Otherwise, it contin-
ues, generating new candidates through genetic operations: selection, crossover, and mutation. 
 

 
Figure 2. Example of an individual expressed by a chromosome 
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Figure 3. Overall framework 
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Genetic operators 
 
GE employs three genetic operators – selection, crossover, and mutation – to generate new solu-
tions: 
 
Selection: Tournament selection is used where a subset of the population is randomly chosen, 
and the fittest individual is selected as a parent.  
 
Crossover: Combines two parent individuals to create offspring. The k-point-block crossover 
method merges genetic data from two parent chromosomes at designated block boundaries to 
create offspring. Each block represents a single utility function’s chromosome. For instance, with 
three utility functions, each is a block, and crossover occurs at two points defining these blocks 
(Figure 4). This approach, using block grammar, prevents the mixing of unrelated blocks from 
different utility functions, avoiding the issues seen in traditional crossover methods. 
 
Mutation: Uniform mutation is used, where each gene is altered based on a fixed mutation prob-
ability. It introduces diversity in the gene value spectrum, preventing early convergence and al-
lowing for a wider exploration of the solution space. 

 
Figure 4. Two-point block crossover operator 
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Fitness evaluation 

The fitness evaluation in the framework involves three steps: 
 
Step 1 – Parameter estimation: The candidate’s fitness is initially evaluated by estimating the 
parameters, using maximum likelihood estimation (MLE) on the training set. 
 
Step 2 – Domain knowledge verification: Following parameters’ estimation, the model is 
checked against predefined shape constraints reflecting prior knowledge, like the expected nega-
tive impact of travel time on utility. Violations lead to the worst fitness values, preventing ad-
vancement to the next generation. If constraints are violated, fitness is predetermined, and step 3 
is skipped. 
 
Step 3 – Model performance evaluation: Fitness is based on the model’s performance on vali-
dation set to prevent overfitting. Fitness is also penalized by parameter count for parsimony, using 
the formula: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐿𝐿 − 𝛼 ⋅ 𝑘 
where 𝐿𝐿 is log-likelihood, 𝑘 the parameter count, and 𝛼 a predefined penalty. The function aligns 
with AIC and BIC, which penalize log-likelihood relative to parameters. The modified function 
equates to AIC with 𝛼 = 1 and to BIC (for a dataset size of 3000) with 𝛼 = 4. 

Efficiency considerations 

In this framework, computational efficiency is achieved in three ways: 
 

• In the first step of parameter estimation, to speed up computation, the variance-covariance 
of parameter estimates is avoided, as it is not required at this stage. It is calculated only 
for the final model after convergence. 

 
• The second step of domain knowledge verification is a screening stage, determining 

which candidates advance to the model evaluation phase. Models failing this verification 
are not assessed on the validation set, leading to considerable time savings. 

 
• A key benefit of GE is its suitability for parallel processing. While generation production 

is sequential, the evaluation of candidates within a generation is independent. This allows 
for the parallel fitness evaluation of individual candidates, significantly reducing time 
requirements. 

3. RESULTS AND DISCUSSION 

The proposed framework was applied to a mode choice dataset to examine the ability to discover 
complex utility specifications under different settings based on grammar and incorporated domain 
knowledge.  
 
Dataset 
 
The dataset utilized in the case study is the Swissmetro dataset (Bierlaire et al., 2001). It is a stated 
preference survey conducted in Switzerland in 1998, designed to capture the preferences for trans-
portation modes among a new Swissmetro (SM), car, and train. The variables used from the 
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dataset consist of level of service variables (i.e., travel time, cost, headway, seats, etc.) and indi-
viduals’ socio-demographics (i.e., age, gender, income, etc.). Categorical variables were one-hot 
encoded to dummy variables. Observations with unavailable alternatives, unknown features or 
outlier values were filtered, resulting in 7,778 samples. The dataset was then divided into training, 
validation, and testing sets in the ratio of 60:20:20. 
 
Experimental Design 
 
The aim of the case study experiments is to evaluate the versatility and effectiveness of the pro-
posed framework for specifying utility functions for DCMs. The framework was applied for three 
utility function specification types: 
 

1. Flexible specification: Each alternative has a unique utility specification, providing max-
imum flexibility. 

2. Generic specification with alternative-specific coefficients: A shared structure across al-
ternatives with distinct coefficients for each alternative. 

3. Generic specification with shared coefficients: A common structure for all alternatives, 
and same coefficients across alternatives. 

To explore the effect of model simplicity, varying levels of parsimony penalties α were applied 
on the flexible structure. Penalty values range from 0 to 10, where the model is “free” when α =
0 and the number of estimated parameters does not affect its fitness, while α = 10 represents the 
largest applied penalty. 
 
All estimated models, regardless of specification type or parsimony, should align with behavioral 
realism. The incorporated behavioral constraints in this study dictate negative sensitivities of util-
ities to travel time and cost. These are hard constraints, and a violation of these constraints leads 
to the worst possible fitness. 
 
Results  
 
Model generation process 
 
To examine the progression and efficiency of the model generation process, the performance of 
the best candidate model with flexible specification across the generations is plotted. Figure 5 
presents the model performance on both training and validation sets. The performance is meas-
ured by the average log-likelihood (AvgLL). The training set curve shows the model’s perfor-
mance as its parameters are estimated, while the validation set curve assesses the model’s gener-
alizability and to prevent overfitting. 
 
The performance on the training set is higher than on the validation set, which is expected since 
the model is optimized for the training data. There is a rapid improvement in both sets in the first 
20 generations, indicating the algorithm’s efficiency in propagating beneficial specifications. The 
improvement on validation set converges by the 60th generation. However, the training set does 
not show continuous improvement. This indicates that in some cases, the model begins to overfit 
to the training set at the expense of its generalizability. As models are advanced based on valida-
tion set performance, training set improvements do not ensure better validation results. Thus, 
models less fitted to training set are chosen for better generalizability. This demonstrates the pro-
posed process to effectively balance the trade-off between fitting the training set and maintaining 
the model’s ability to generalize to unseen data. 
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Figure 5. Best candidate performance on training and validation sets along generations. 

 
Specification types 
 
In addition to the flexible specification analyzed above, additional two specification types were 
examined. Table 1 presents the models’ performances and number of estimated parameters. The 
flexible specification outperforms all models across all datasets, followed by the generic specifi-
cation and the fully generic. However, the fully generic specification, while not leading in perfor-
mance, demonstrates simplicity with its parsimonious parameter estimation, as the number of 
estimated parameters is significantly decreased. 
 

Table 1. Performance (AvgLL) of different specification types 

Model structure Training Validation Testing Estimated parameters 
Flexible -0.674 -0.689 -0.721 39 
Generic specification with al-
ternative specific parameters -0.684 -0.702 -0.734 33 

Fully generic -0.693 -0.711 -0.738 18 
 
Parsimony 
 
Table 2 presents model performance across different α values on three sets: training, validation, 
and testing. The results demonstrate a clear trend of decrease in the number of estimated param-
eters as the penalty increases, as expected. A sharp drop occurs in the number of parameters as 𝛼 
increases from 0, which then levels as further increases in 𝛼 result in additional marginal reduc-
tions in parameters. The gradual decline in AvgLL indicates a decrease in model fit with increased 
parsimony, a common trade-off in model selection.  
 
The results show that there is a significant reduction in the number of parameters when penalties 
are applied within the range of less than 5. Within this range, the corresponding decrease in 
AvgLL is relatively limited, suggesting that the performance of the model is insignificantly af-
fected despite the reduction in complexity. This indicates that penalties up to a threshold of 5 
contribute to the development of more parsimonious models without substantially compromising 
their predictive accuracy. However, beyond this threshold, the penalties lead to a more 



10 
 

pronounced decline in model performance. This threshold marks the balance in the tradeoff be-
tween having model’s simplicity and its performance.   
 
 Table 2. AvgLL as a function of 𝛂 

 
 
To further understand the included variables in the parsimonious models, the percentages of these 
models in which each variable appears were calculated and presented in Figure 6. The travel time 
and cost variables of each mode appear in all models, including the most parsimonious model 
with the fewest estimated parameters. This demonstrates that the model still includes travel time 
and cost variables of all alternatives even with the highest penalties. These variables were in-
cluded in each utility function by an interaction to correspond with a single estimated parameter. 
This emphasizes the importance of these variables as the main factors affecting mode choice. The 
next prevailing factor is purpose of travel which appears in 9 out the 11 estimated models, dropped 
at 𝛼 = 9. This indicates the importance of including the purpose of travel in at least one utility 
function of the model to better represent the travelers’ preferences and better predict their choices. 
The remaining factors appear to be less informative for the model when the objective is focused 
on parsimony. The male variable and seat configuration did not enter any of the models, including 
the non-penalized flexible model, apparently for their insignificant contribution to model fit while 
aiming to maintain generalizability. 
 

 
Figure 6. Variable frequency in top parsimonious models 

𝛼 0 1 2 3 4 5 6 7 8 9 10 

Training -0.674 -0.678 -0.681 -0.684 -0.689 -0.689 -0.712 -0.712 -0.712 -0.729 -0.729 

Validation -0.689 -0.690 -0.692 -0.698 -0.702 -0.702 -0.725 -0.725 -0.725 -0.744 -0.744 

Testing -0.721 -0.723 -0.725 -0.734 -0.734 -0.734 -0.755 -0.755 -0.755 -0.773 -0.773 

Number of parameters 39 24 22 18 16 16 9 9 9 5 5 
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4. CONCLUSIONS 

This study presents a new method for specifying utility functions in DCMs using grammar, com-
bining data-driven flexibility with interpretability. It employs domain-specific grammar for varied 
variable interactions and transformations, balancing model simplicity and performance through 
log-likelihood penalties for parsimony. The methodology includes ML dataset splitting for vali-
dation and leverages parallel processing in the GE algorithm for efficient exploration. The case 
study highlights the importance of dataset splitting and grammatical design’s ability to support 
different specification types, with investigations into parsimony showing effective maintenance 
of key model attributes. This work, merging domain knowledge with algorithmic and data-driven 
approaches, provides a flexible tool for utility specification and future work aims to test its appli-
cation to other logit structures, like nested and mixed logit, utilizing its adaptable nature. 
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