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SHORT SUMMARY

This paper presents a directed acyclic graph model to study the profitability of a fleet of electric robo-taxis,
whereby the vehicles do not only serve travel requests, but they also perform vehicle-to-grid as a secondary
activity to increase the revenues generated by the fleet. Then, when including operational costs, we also
account for the battery degradation induced by charging and discharging activities. We present a real world
case study of Eindhoven, The Netherlands, where we quantify the advantages and disadvantages of allowing
V2G activities and show the difference in terms of operational costs, and revenues. The results show that
allowing for V2G activities can be counterproductive for the profitability of the fleet. Even if it is possible to
generate revenues by trading energy, the additional costs in term of battery degradation cannot be neglected
and should be accounted for.
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1 INTRODUCTION

Mobility-as-a-Service (MaaS) is revolutionizing transportation, however this sector is one of the few where
emissions are still increasing (EPA, 2018). In this environment, advances in autonomous driving and elec-
tric powertrain can provide a more sustainable car-based mobility: combining centrally controlled electric
autonomous vehicles can allow the deployment of Electric Autonomous Mobility-on-Demand (E-AMoD)
systems, whereby these vehicles provide on-demand mobility. Controlling such a fleet can, not only allow
efficient traffic management by real time route optimization, but also enables optimizing fleets’ charging
time and location. This will maximize the opportunity for the operator to trade energy in markets via
vehicle-to-grid (V2G) activities. This is the case especially in markets where electricity prices are volatile,
due to energy mixed with a large share of solar energy. This paper studies fleet operational strategies that are
optimized to satisfy user demands, whilst profitably performing price-driven charging and V2G activities.
In particular, we perform a real-world case study where we analyze the advantages and disadvantages of
performing V2G taking into account battery degradation.
Related Literature: This paper pertains to the research streams of mobility-on-demand operation. Multiple
approaches to model and control AMoD systems have been proposed: Two examples are the vehicle routing
problem (VRP), see Yao et al. (2021) and multi-commodity network flow models (Iglesias et al., 2018;
Paparella, Pedroso, et al., 2024). Both methods are flexible and allow for the implementation of a wide
range of constraints and objectives. When considering E-AMoD systems, vehicle coordination and charging
algorithms have been extensively studied, for example by Rossi et al. (2020).
This paper presents a modeling framework to optimize the operations of an E-AMoD fleet to maximize the
profitability, and a case study of the city of Eindhoven, the Netherlands.
Organization: The remainder of this paper is structured as follows: Section 2 briefly introduces the E-
AMoD model optimization framework, whilst Section 3 details our real-world case study of the city of
Eindhoven, The Netherlands, and the results obtained. Finally, Section 4 draws the conclusions and provides
an outlook on future research.

2 PROBLEM FORMULATION

In this section, we briefly recall the optimization problem of the vehicle routing, charging and V2G opera-
tions via directed acyclic graphs (DAGs), an extension of the vehicle routing problem. We refer the reader
to our previous work, Paparella, Hofman, & Salazar (2024), for a detailed explanation.
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Directed Acyclic Graph Model

First, we define travel request i ∈ I := {1, 2..., I} is defined as ri = (oi, di, ti) being a travel request from
origin oi to destination di at time ti. Then, we construct a DAG, G = (V,A), where the nodes V are travel
requests and the arcs A are the fastest path from the destination of ri, di, to the origin of rj , oj and it is
characterized by travel time tfpij and distance dfpij , respectively. If i = j, we denote with tfpii the time of the
fastest path to serve request i. To consider depots of vehicles, we extend I+ := {0, 1, 2..., I, I + 1}, where
the first and last requests represent a fixed location (depot, parking spot), so that vehicles start and conclude
their tasks at a pre-defined point. Finally, we define a set of vehicles K := {1, 2...,K} with vehicle k ∈ K.

Problem Formulation

In this paper, the objective is to maximize the profit accrued by the fleet. The two terms that influence it are
the cost of operation and the revenues generated by serving requests. Formulated as a cost-minimization
function, the objective is then

J =
∑
i,j∈I

pelij ·
∑
k∈K

Ck
ij −

∑
i∈I+

bir · pi, (1)

where pelij is the average price of electricity in between the drop off of requests i and the pick up of request
j, Ck

ij is the amount of energy withdrawn from or injected to the grid, bir is a binary variable indicating
whether request i is being served, and pi is the revenue generated by serving it.
Then, the maximum-profit operation problem for an E-AMoD fleet is defined as follows:

Problem 1 (Optimal E-AMoD Fleet Management) Given a road network G′, a set of transportation re-
quests I, the operations in terms of serving requests, charging and V2G that maximize the total profit of the
E-AMoD system result from

min J

s.t. Operational Constraints

Energy Constraints

Time Constraints

Problem 1 is a mixed integer linear program that can be solved with optimality guaranteed by commercial
optimization algorithms. The constraints ensure continuity of battery State of Charge (SoC), that a vehicle
can charge only if it goes to a charging station, and that there is sufficient time to go from the destination of
a request to the origin of the next request that has to be served. Given that the objective of the operator is
to maximize profit, the fleet will try to serve as many users as possible. However it might not be possible to
serve all of them, so, to indicate whether a user i is served or not, we define binary variable bir.
A few comments are in order. First, we consider travel times on the road digraph to be given. This assump-
tion is in order for a small fleet as the one under consideration, whose routing strategies do not significantly
impact travel time and hence overall traffic. This way, also varying levels of exogenous traffic during the
course of the day can be captured by simply including time-dependent traffic data and adjusting fastest
path time and distance accordingly. Second, we assume the charging stations to always be available. We
leave the inclusion of constraints to avoid potentially conflicting charging activities by multiple vehicles to
future research. Third, the solution of Problem 1 is deterministic and assumes perfect knowledge of travel
requests. In fact, Problem 1 should be interpreted as a design problem (not suitable for online implemen-
tation), where the result is an upper bound on the performance that such AMoD system can achieve in an
online fashion. Last, we assume the electricity prices to be known in advance, given the presence of the
day-ahead market and that the fleet size is small enough to not influence the energy prices.

Battery Degradation

During the lifetime of a vehicle, its battery deteriorates due to irreversible electro-chemical reactions, known
as battery aging. This phenomenon is called "cyclic ageing", and occurs during the charging and discharging
of the battery. It is predominant in mobility system such as the one considered in this study because of the
intensive use of the vehicles. The normalized battery charge capacity degradation, according to Rath et al.
(2023), is defined as

∆Ẽb = κ ·
√
Q, (2)

where, Q is the charge throughput in Ah, and the constant κ is

κ = b1 · (ϕz − b2)
2 + b3 ·∆z + b4 · Cch

rate + b5 · Cdch
rate + b6. (3)
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The average SoC is ϕz , while ∆z is the Depth of Discharge (DoD), Cch
rate and Cdch

rate are the c-rates during a
full charge and discharge cycle, respectively. The battery-specific values of the battery are b1,2..,6. We refer
the reader to Rath et al. (2023) for a detailed explanation of the model and of the meaning of the parameters.
Note that the operation of the E-AMoD fleet does not aim to minimize cyclic aging, but merely to estimate
the number of cycles before End of Life (EoL). In particular, after solving Problem 1, we post-process the
results to compute the relative battery degradation cost. This allows to show the potential effects that V2G
activities can have on battery degradation and on the relative operational costs. In the future, the authors
would like to include a tractable model of battery degradation in the objective function so that the cost
related to degradation can be jointly optimized.

3 RESULTS

In this section, we compare an E-AMoD system in terms of operational strategies and costs, and compare
it based on allowing or not V2G capabilities. We present a case study conducted in the city of Eindhoven,
The Netherlands, using data generated by Albatross, A Learning BAsed Transportation Oriented Simulation
System, (Arentze & Timmermans, 2004; Rasouli et al., 2018). Albatross is a state-of-the-art activity-based
model from the computational process model family, employing a series of CHAID decision trees at its
core, to simulate activity-travel schedules. Albatross is household-based meaning that up to two household
heads are included in the household. Initially, a synthetic population is simulated for Eindhoven using
the iterative proportional fitting method. Subsequently, the synthetic population is used as input for the
activity-travel model. Albatross simulates the activity-travel schedules for this population for a complete
day, down to the minute. The model simulates leave times, travel times, start times of the activity, end times
of the activity, origin and destination (at Postal Code level 4, i.e., the first 4 digits of the Dutch postal code),
activity type, and mode choice as most important information for the remainder of this study. Due to the
high level of detail in the output data and the ability to simulate a complete city, we are able to provide
insights whether V2G could be profitable for Dutch cities such as Eindhoven. Fig. 1 shows the number of
demands batched every 5 minutes and the registered electricity prices on the 1st of November 2023.

Figure 1: The figure shows the number of demands during a day, and the recorded energy price in
the Netherlands during November 1st, 2023 (courtesy of nordpoolgroup.com).

Comparison of Operational Costs With and Without V2G

In this section, we examine the impact of V2G activities on the overall profitability of an E-AMoD fleet.
In particular, we take into account the battery degradation that is caused by higher dis(charging) activities,
which, however, is not included in the objective function. Moreover, we assume that every time a battery
reaches EoL, it is sold, and replaced in the vehicle with a new one. We consider a fleet of 70 Nissan Leafs
2022. The charging infrastructure is composed of 10 chargers of 22 kW uniformly spread in the urban
area of Eindhoven. The net cost of a Nissan Leaf’s battery, accounting for the EoL value, is set to 5300
e. Fig. 2 shows two case studies with a fleet of 70 Nissan Leafs during a day of operation. The two
case studies are with (left) and without (right) V2G capabilities. In particular, the figure shows the power
withdrawn from and injected to the grid, and the net energy usage. Table 1 shows the operational revenues
and costs of the fleet for the two cases. The results show that revenues generated by travel requests are not
influenced by the V2G activities. In fact, given that serving travel requests is more profitable than trading
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Figure 2: Charging, discharging activities and net energy withdrawn from the grid during the day.
In the left figure the fleet is allowed to perform V2G, while in the right figure the fleet can only
charge. Fleet composed of 70 Nissan Leafs. Power of the chargers of 22 kW.

Table 1: Daily Operational Costs and Revenues to operate a fleet of 70 Nissan Leafs.

- V2G No V2G Unit
Travel Requests Revenue 21900 21900 [e/day]

Charging Cost 610 165 [e/day]
Discharging Revenue 750 0 [e/day]

Battery Degradation Cost 730 290 [e/day]
Profit 21310 21445 [e/day]

Battery Life Time 510 1290 [day]

energy, the fleet gives strong priority to serve travel requests. Second, we highlight that performing V2G
strongly influences the degradation of the battery, and as a consequence, it leads to a significant increase in
the costs per day. Due to strong V2G activities, degradation is so accelerated that battery life is in the order
of six months. From this result, we can conclude that performing V2G activities can be counter-productive
for the profitability of a fleet of electric vehicles for mobility-as-a-service, because of the strong battery
degradation induced, which should be jointly optimized with the operation of the fleet.

4 CONCLUSIONS

In this paper we presented a directed acyclic graph formulation to optimize the activities of a fleet of elec-
tric vehicles for mobility-as-a-service purpose. We conducted a real-world case study of Eindhoven, The
Netherlands, where we showed that allowing for V2G activities can be counter-productive for the profitabil-
ity of a fleet mainly due to the increase in costs due to battery degradation. Moving forward, several exten-
sions to this work are worth exploring. First, incorporating battery degradation inside the objective function
will allow to draw the trade-off between V2G intensity of activities and battery degradation. Second, we
would like to include ride-pooling and intermodal settings where transportation requests are served jointly
with public transit and active modes. Third, we would like to study the solutions stemming from different
cost-functions, such as environmental impact, accessiblity and fairness. Finally, it would be worthwhile
developing tailored solution algorithms to solve the optimization problems presented, as well as deriving
implementable online control schemes.
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