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SHORT SUMMARY

This paper presents an Activity-Based Model (ABM) for modeling epidemiological responses, during or
after a pandemic. The objective of the model is to include mobility restrictions, such as imposed curfews
or other activity-restriction policies when computing the activity schedules. The proposed ABM builds on
the foundation laid by (Pougala, Hillel, & Bierlaire, 2022), adding new terms in the objective function and
constraints. Moreover, we incorporate a dynamic programming algorithm to solve the above-mentioned
optimization problem in a computationally efficient way. This method allows us to solve the optimization
problem for large-scale populations and thousands of activities, addressing one of the main limitations of
the work (Pougala et al., 2022). By realistically modeling the interactions within a given setting, the method
ensures that all possible contacts are accurately represented, capturing the true dynamics of infection trans-
mission within the population.
Keywords: activity-based modeling, agent-based simulation, and decision-making.

1 INTRODUCTION

The global pandemic of COVID-19 has caused significant changes in how populations move and interact,
resulting in profound modifications to mobility patterns. These changes are rooted in two primary factors:
psychological and imposed restrictions. The fear of the virus, or the memory of it, has led people to vol-
untarily alter their daily routines, reducing their movements, avoiding big crowds, or embracing the new
normality of teleworking. In addition, governments implementing various degrees of restrictions to control
the spread of COVID-19 has collectively reshaped individual mobility within society.

Within this context, significant research has been conducted on the interplay between mobility and epi-
demiology, especially regarding the spread of diseases like COVID-19 ((Hancean, Slavinec, & Perc, 2021),
(Mazzoli, Mateo, Hernando, Meloni, & Ramasco, 2020), (Palguta, Levinsky, & Skoda, 2022)). Addition-
ally, studies have focused on estimating and simulating virus propagation based on mobility ((Tuomisto
et al., 2020), (Kerr et al., 2020), (Aleta et al., 2020)). In a previous study (see (Cortes Balcells, Krueger,
& Bierlaire, 2023)) the authors have proposed tools to drive policymakers by aggregating epidemiological
models with ABMs, to propose optimal Non-Pharmaceutical Interventions (NPIs). However, while (Cortes
Balcells et al., 2023) proposes an accurate epidemiological model, it lacks in modeling the reaction of the
population to the restrictions of NPI. In particular, when an NPI is considered, the study simply reduces the
number of contacts of the target activity, without considering the possibility of activity rescheduling from
the individuals. This limitation can be addressed by the implementation of an Agent-Based Model (ABM).
ABMs offer a more dynamic and flexible framework, allowing for the simulation of individual behaviors
and decisions in response to changing conditions, such as NPIs. This approach not only accounts for the
direct impact of restrictions on activity participation but also captures the adaptive strategies individuals
might employ, such as changing the time, location, or nature of their activities, thereby providing a better
understanding of how population behavior evolves in response to public health policies. Existing models
such as MATSim (Muller et al., 2020), lack the capability of allowing individuals to reschedule a different
type of activity when their preferred activity is removed from the choice set. On the other hand, the Activ-
ity Scheduling with Integrated Simultaneous Choice Dimensions (OASIS) model proposed in (Pougala et
al., 2022) can allow for rescheduling, but it is unable to handle entire city populations and their numerous
facilities.

In this paper, we propose an adaptation of the ABM proposed in (Pougala et al., 2022), to consider NPIs,
making it a suitable tool to be coupled with epidemiological models. This framework simulates how in-
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dividuals and populations respond to various NPIs, providing a more accurate context for understanding
and predicting the spread of diseases in complex social systems. Moreover, we propose an efficient way to
solve the problem, allowing the study of a larger population and many facilities. By leveraging dynamic
programming, we enable the scalable analysis of behavioral adaptations and mobility patterns, significantly
improving the model’s applicability to diverse public health scenarios.

The proposed model offers a powerful approach to managing pandemic-induced challenges, contrasting
with more generalized models. This comprehensive solution fills a critical void in the literature, providing
a direct link between the imposed NPIs and the reaction of the individual subjected to them.

The paper is divided as follows: Section 2 contextualize the framework, defining inputs, outputs and ob-
jective, while Section 3 presents the methodology and mathematical formulation of the problem. Section 4
presents the ABM results on the study case of the city of Lausanne, Switzerland, consisting in population
of 100,000 individuals and considering 86,207 facilities.

2 CONTEXT AND PROBLEM STATEMENT

Context Previous work from the authors, i.e. (Cortes Balcells et al., 2023), integrated an epidemiological
behavioral model, an economical model, and an optimization algorithm into a tool to drive the choice
of NPIs in pandemic management. A graphical schematic of this work is proposed in Figure 1. The
figure presents the proposed tool linking mobility restrictions, epidemiological behavior, and an economical
model. The last two models calculate health and economic costs, which are optimized using a Variable
Neighborhood Search (VNS) algorithm to balance the trade-off between health implications and economic
fallout. While the epidemiological behavioral model, the economical model, and the optimization algorithm
are already exhaustively described in (Cortes Balcells et al., 2023), this paper focuses on a formulation of
the mobility restriction model as ABM. As visible from Figure 1, the ABM takes as input the characteristic
of the individuals xt and of a set of facilities xa. Moreover, the AMB is fed with the restriction selected
from the optimization framework P . The expected output is a schedule of individual activity.

Figure 1: Schematic vision of the overall scope.

The dynamic of mobility is generated using the mobility restriction model and is captured within a day,
discretized into T time intervals. For each day, we consider a discretized time horizon into T time intervals
of the same length. A typical discretization is 5 minutes, so the time is indexed by t = 1, . . . , T = 288. The
space is represented by a discrete set F locations, or facilities, corresponding to the points of the perimeter
that we are interested in (a city, a region, etc.), with characteristics xa. We also consider a discrete list of A
activities that individuals can perform during the day. Each activity a is associated with a set of locations
or facilities Fa, and has characteristics xa. Finally, we define each individual n with characteristics xn,
belonging to the set N .

Inputs of the mobility restriction model The model operates with three main inputs: individual
characteristics, facility characteristics and imposed policies. The input xn includes the characteristics of the
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individual, including attributes such as the personal identifier, the city of residence, the age, the employment
status, and the home and work identifiers along with their corresponding coordinates. The second input, xa,
details the characteristics of the facilities. Each facility is characterized by its identifier, type (education,
shop, or leisure), type identifier, and geographic coordinates in the Swiss projection system. The last input
of the model the NPI policy p. Every policy p consists in the activation of the set of parameters belonging to
P , where each element of P is defined as a parameter φrestriction,a, ∀a ∈ A, where φrestriction,a is a parameter
that takes value 1 if the restriction is activated for activity a, and 0 otherwise. This includes new convex
constraints reflecting multiple interventions, where restriction can be the closure of activities, management
of peak hours, travel-time restriction, curfew restriction, and outside time limits.

Problem statement Given a set of activities A, and a set of restrictions P for a population with socio-
economic characteristics xen, 1 we obtain feasible schedules for the population, and define the visits v of an
individual n by the following binary variable:

Zv
fnt =

{
1 if individual n visits facility f at time t;

0 otherwise.
(1)

3 MOBILITY RESTRICTION MODEL

Formulation The mobility restriction model is formulated as an activity-utility-based model. The util-
ity function describes the normal behavior of an individual who might want to engage in some activity and
does not want to deviate too much from their timing preferences. The foundational structure of the utility
function is adapted from (Pougala et al., 2022). This work builds upon the existing framework by intro-
ducing additional terms in the objective function and incorporating new constraints to address the mobility
restrictions. Given a set of activities A, and restrictions P , the optimization problem can be defined as:

max
ω,Z,x,τ

U0 +

A∑
a=0

Z0
a(χa + V1

a + V2
a +φtraveltime,aV

3
ab) +

A∑
a=0

A∑
b=0

Zab · θt ·ωab (2)

subject to:∑
a

∑
b

(Z0
a · x2a + Zab ·ωab) = 24 (3)

ωdawn = ωdusk = 1 (4)

x2a ≥ Z0
a · τmin

a ∀a ∈ A (5)

x2a ≤ Z0
a · T ∀a ∈ A (6)

Zab + Zba ≤ 1 ∀a, b ∈ A, a ̸= b (7)
Za,dawn = Zdusk,a = 0 ∀a ∈ A (8)∑
a

Zab = Z0
b ∀b ∈ A, b ̸= dawn (9)∑

b

Zab = Z0
a ∀a ∈ A, a ̸= dusk (10)

(Zab − 1) · T ≤ x1a + x2a + Zab ·ωab − x1b ∀a, b ∈ A, a ̸= b, (11)

(1− Zab) · T ≥ x1a + x2a + Zab ·ωab − x1b ∀a, b ∈ A, a ̸= b (12)

x1a ≥ χ−
a ∀a ∈ A (13)

x1a + x2a ≤ χ+
a ∀a ∈ A (14)∑

a∈Fa

Z0
a ≤ 1 ∀a ∈ A (15)

φclose,aZ
0
a = 0 ∀φclose,a ∈ P, a ∈ A (16)

φtimeslotstart,ax
1
a ≥ φtimeslotstart,at

1
Θ ∀φtimeslotstart,a ∈ P, a ∈ A (17)

φtimeslotend,a(x
1
a + x2a) ≥ φtimeslotend,at

2
Θ ∀φtimeslotend,a ∈ P, a ∈ A (18)

φpeakhour,a(x
1
a + x2a) ≤ φpeakhour,a(t

3
Θ + 24 ∗ (1− Z2)) ∀φpeakhour,a ∈ P, a ∈ A (19)

1xen includes information such as age, gender, and employment status.
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φpeakhour,ax
1
a ≥ φpeakhour,a(t

4
Θ − 24 ∗ (1− Z1)) ∀φpeakhour,a ∈ P, a ∈ A (20)

φpeakhour,a(Z1 + Z2 − 1) ≥ 0. (21)

φtraveltime,a(Zab ·ωab) ≤ φtraveltime,at
5
Θ ∀φtraveltime,a ∈ P, a ∈ A (22)

φcurfewτdawn ≤ φcurfewt
6
Θ (23)

φcurfewxdusk ≥ φcurfewt
7
Θ (24)∑

a

A∑
b

φclose,a(Zab ·ωab + Z0
a · x2a + zba · ρba) ≤ φclose,at

8
Θ ∀φclose,a ∈ P, a ∈ A (25)

where:

V1
a = θearly

a · max(0, κa − x1a − ∆early
a ) + θlate

a · max(0, x1a − κa − ∆late
a ) (26)

V2
a = θshort

a · max(0, τa − x2a − ∆short
a ) + θlong

a · max(0, x2a − τa − ∆long
a ) (27)

V3
ab = θt ·ωab (28)

U0 from Equation (2) is a generic utility for aspects not associated with an activity, χa is the utility asso-
ciated with participating in an activity a during the day, terms V1

a and V2
a are utility penalties that capture

deviations from the preferred starting time and duration, respectively. These terms allow the individual to
reorganize by assigning a time window around that preference, depending on the flexibility of the activity.
Note that the utility is maximal if x1a ∈ [xa − ∆

early
a , xa + ∆late

a ] but decreases with a coefficient θearly
a if

the start is earlier, and a parameter θlate
a if later. The same concept applies to durations designated by τa.

Finally, θt represents the penalty due to travel time when going to activity a. Table 1 presents the notation
and corresponding description of the variables and parameters.

Table 1: Description of the variables and parameters

Notation Description
Z0
a binary variable set to 1 if activity a is scheduled during the day, 0 otherwise

Z0
b binary variable set to 1 if activity b is scheduled during the day, 0 otherwise

Zab binary variable set to 1 if activity b follows immediately activity a where a ̸= b

x1a discrete variable representing the starting time of activity a

x1b discrete variable representing the starting time of activity b

x2a discrete variable representing the duration of activity a

xdusk discrete variable representing the starting time of the activity at dusk time
κa discrete parameter representing the desired starting time of activity a

τa discrete parameter representing the desired duration of activity a

ωab discrete parameter representing the travel time between facilities a and b

∆a discrete parameter representing the flexibility level of activity a

χa utility associated with participating in an activity during day a

θt travel time penalty
θa penalty for activity a for starting early, late, being short, or being long
t1Θ user-defined time slot to start an activity
t2Θ user-defined time slot to end an activity
t3Θ user-defined start closing time to avoid peak hours
t4Θ user-defined end closing time to avoid peak hours
t5Θ user-defined maximum travel time
t6Θ user-defined staying at home time
t7Θ user-defined starting time of dusk activities
t8Θ user-defined maximum allowed time in an activity

Equation (3) constrains the total time of a schedule to match a 24-hour time-horizon. Equations (8) and
(12) ensure that each schedule begins and ends with dummy home activities, symbolizing dawn and dusk.
Equations (9) and (10) enforce the consistency of activity durations, requiring them to be longer than a
minimum duration but shorter than the time horizon, and nullify the duration if an activity is absent from
the schedule. Equation (11) stipulates that two distinct activities, a and b, can follow each other only
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once, and an activity cannot follow itself. Equations (13)–(14) mandate that each activity has exactly one
predecessor and successor, implying that:

Zab = 1 ⇔ Z0
a = 1 and Z0

b = 1.

Equations (15) and (16) ensure time consistency between consecutive activities: Zab = 1 ⇒ x1b = x1a +
x2a + ωab. This prevents activities from overlapping, whether they are immediately consecutive or not.
Constraints (17) and (18) specify that activities must occur within defined time windows. Lastly, Equation
(19) limits to only one facility per activity Fa. Equations (16)–(25) are activated by the binary parameter
φrestriction,a which takes the value of 1 if a certain restriction is activated for activity a, and 0 otherwise. It
modifies the constraints dynamically, allowing the model to adapt to different policy scenarios. φrestriction,a
integrates the following model constraints:

• Closure of Activities: When φclose,a is activated (i.e., set to 1), it enforces the closure constraints,
effectively setting Z0

a = 0 for the closed activities, as seen in Equation (16). The activities can also
be closed for a specific slot of time, by activating φtimeslotstart,a which defines the time slot to start an
activity at time t1Θ (Equation (17)), and φtimesloted which defines the time slot when an activity ends
at time t2Θ (Equation (18)).

• Peak Hours: The φpeakhour,a parameter controls whether the peak hour constraints are active. If set,
it influences the scheduling of activities to avoid peak hours, from t3Θ to t4Θ, as reflected in Equations
(19) – (21).

• Travel-Time Restriction: φtraveltime,a activates the travel time constraints, ensuring that the duration
of travel between activities a and b does not exceed a predefined limit t5Θ, as per Equation (22).

• Curfew Constraint: Similarly, φcurfew governs the enforcement of curfew-related constraints, af-
fecting the allowed times for the start and end of activities, one to prevent people leaving their home
before a certain hour t6Θ (see Equation (23)),and another to force them to be back at home at a given
time t7Θ (see Equation (24)).

• Outside Time Limit: In the case of φoutsidelimit, it restricts the total duration of certain activities like
leisure and shopping, aligning with Equation (25) which ensures that the travel time to go to the
activities t8Θ is respected.

Model Parameters As already mentioned, the utility function originates from the OASIS framework
(Pougala et al., 2022). Thus, we are adopting the utility parameters from their literature, as well as the
flexibility levels they estimated for each facility type. Our approach differs from OASIS in that we do not
consider budget constraints, mode of transportation variables, and there is no random term in the objective
function. Home has no associated utility (χhome = 0) and no timing desires coming from individuals.
For information regarding the utility parameters and the flexibility profiles, please refer to (Pougala et al.,
2022)2.

Computational Complexity Since the goal of the ABM is to be included in an epidemiological
activity-based model, the facility choice set needs to match the population size. This need arises from
the fact a limited number of facilities can result in overcrowding, thereby escalating the virus transmission,
whereas an excessively large number of facilities can spread out the gatherings, consequently reducing the
virus spread. The problem with increasing the number of facilities is that the execution time is affected by
the choice set size, growing exponentially with more options. In fact, solving model (2)-(25) with commer-
cial solvers is slow and the model is intractable even for small instances with a few activities. To address
this problem, we make the assumption that an individual only considers the closest facilities to them. This
assumption is restrictive but does not impact the ABM results, since there is no benefit in traveling further
to do an activity that could have been done closer. The number of nearby facilities to work and home is
user-defined. In addition, we use an advanced dynamic programming algorithm to solve the problem, by
representing model (2)-(25) in a network allowing us to reduce computation complexity, as discussed in the
following paragraph.

2Note that utility parameters have been evaluated on a student population. Consequently, even an adult in active life
has more gain to go to an education-related facility, i.e., χeducation > χwork.
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Dynamic programming algorithm The problem can be described as an elementary shortest path
problem with resource constraints which is a common sub-problem for the solution of vehicle routing prob-
lems. The method used to solve this variant of the shortest path problem is usually a dynamic programming
method, also known as labeling algorithms (e.g., (Torres, Gendreau, & Rei, 2022a, 2022b)). To describe
the Dynamic Programming algorithm, we first discretize the time into 288 intervals for every 5 minutes.
We define a state using a label L = (a,U, t, x3a, u,R), where a is the current activity, U is the total utility
collected including the current activity, t is the time interval, x3a is the duration of the activity, u is the cu-
mulative cost, and R is the set of activities that cannot be reached either because they have been completed
or are mutually exclusive with completed activities.
The algorithm starts with an initial label that represents the start of the day. In each iteration, it explores
all possible activities, creating new labels with updated states. Resources are extended through resource
extension functions which keep track and update resource consumption. To extend a label Lk to a new
activity aj, we first check if the extension is feasible, ensuring that no constraints (such as time or budget)
are violated and aj is not in Uj. If feasible, we create a new label Lj with updated resource states.

4 RESULTS

Tested Scenarios and Computational Complexity We explore seven different scenarios, each rep-
resenting a different imposed NPI, as detailed by Table 2. The first scenario, "No restrictions," represents
a baseline with all sectors operating normally. "Outing limitations" imposes time restrictions on shopping
and leisure, leaving education and work unaffected. The "Early curfew" scenario introduces a curfew at
5 PM without impacting sector operations. "Economy preservation" proposes to close leisure, shopping,
and education sectors, but allows working activity. The "Essential needs" scenario restricts leisure and ed-
ucation while keeping other sectors operational. "Work-education balance" adjusts operating hours for the
education and work sectors to facilitate a balance, and finally, "Leisure facilities closure" specifically tar-
gets leisure activities for closure, with other sectors remaining operational. The model efficiently manages
a facility choice set of 86,207 with a population of 100,000, achieving an average execution time as detailed
in Table 3. These results show the model’s computational robustness.

Tested Scenarios
Closure Constraints

Leisure Shopping Education Work Curfew

No restrictions
Outing limitations x from 8 to 12am
Early curfew 5pm
Economy preservation x x x
Essential needs x x
Work-education balance from 1 to 5pm from 8 to 12am
Leisure facilities closure x

Table 2: Tested scenarios, each one considering different NPIs as input to the ABM.

Execution time [h:mm:ss] individuals/second second/individuals

No restrictions 1:40:35 16.57 0.06
Outing limitations 24:9 69.01 0.014
Early curfew 1:38:53 16.85 0.059
Economy preservation 2:55 570.13 0.0018
Essential needs 39:11 42.54 0.024
Work-education balance 1:18:09 21.33 0.047
Leisure facilities closure 38:45 43:01 0.023

Table 3: Execution details, for each tested scenario (to be filled new values).

Model Validation To validate our model, we compared it with MATSim which shows similar trends
but with reduced activity durations, suggesting a more conservative approach to mobility (Figure 2). The
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overall pattern, as shown in Figure 2b, aligns with our results (Figure 2a), underscoring our model’s validity.
However, MATSim shows slightly higher activity frequencies, and individuals in MATSim rarely stay home
all day. Our model also tends to shorten activity durations, given our flexibility feature allowing individuals
to end activities earlier. Also, it is worth remembering that our model stratifies the population into seven
groups. This stratification ensures realistic activity scheduling; for instance, it prevents unlikely scenarios
such as children or elderly individuals going to work, or unemployed people engaging in work-related
activities, which can sometimes occur in MATSim. These differences, while notable, confirm our model’s
robustness and its utility in predicting behavioral changes in various scenarios.

(a) Output of the mobility restriction model for the baseline scenario.

(b) Output of MATSim.

Figure 2: Model comparison with MATSim.

Behavioral Adaptations The most important feature of the proposed ABM is that it allows the indi-
vidual to make changes to their schedule when an NPI is introduced. This reveals varied individual and
population responses to different mobility restriction scenarios. To provide an overview of these reschedul-
ing choices, we present the share of population (S) performing each activity and mean duration (D) for the
scenarios tested in Table 4. By comparing "Leisure facilities closure" with the "No restriction" scenario,

Work Education Shop Leisure

S D S D S D S D

No restrictions 50% 02:34 94% 02:55 86% 00:16 91% 00:44

Outing limitations 50% 03:02 94% 03:00 36% 00:16 - -
Early curfew 39% 02:30 60% 02:41 80% 00:19 71% 00:43
Economy preservation 100% 04:08 - - - - - -
Essential needs 75% 04:03 - - 87% 00:19 - -
Work-education balance 13% 01:28 16% 01:53 98% 00:21 94% 00:53
Leisure facilities closure 50% 03:03 92% 02:57 86% 00:19 - -

MATSim 51% 05:28 14% 03:52 42% 00:32 52% 01:53

Table 4: Share of population (S) performing the activity and mean duration (D).

we can directly observe the importance of modeling the rescheduling of activities. Indeed, when the clos-
ing of leisure facilities is imposed, the model outputs an increased activity in work and shop activities. In
particular, average working time increases by 30 minutes and shop by a few minutes. This deviation in
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the participation of the population to different activities can affect the epidemiological model linked to the
ABM. This is because the epidemiological model considers contacts in activities as the cause of infections.
If the mean duration of "shop" increases, the amount of contacts also increases, causing the "Leisure fa-
cilities closure" NPI to be less effective. This modification is not considered in models like MATSim that
instead focus on the change of mean of transportation from one activity to the other.

5 CONCLUSIONS

The paper presents an ABM that models individual responses to NPIs. The model, built upon the foun-
dation set by the OASIS model, incorporates possible NPIs imposed on the population, allowing for the
study of larger populations and facility numbers. A key aspect of our study is the validation of our model
against existing standards, particularly MATSim. By comparing our results in a "No restriction" scenario
with those of MATSim, we show the robustness and reliability of our approach. Furthermore, our study pro-
vides information on how people adjust their activities when faced with specific restrictions. When usual
activities are limited or shut down, we see an increase in other types of activities. Understanding this shift
in behavior is crucial for studying diseases, as it alters the patterns of how people interact, influenced by
health guidelines, and therefore it directly impacts the spreading. Future work considers the integration of
a latent class inside the utility function that captures the memory of the fear of individuals, as a function of
their socioeconomic characteristics, and the integration of the developed ABM inside the epidemiological
tool developed in (Cortes Balcells et al., 2023), to study how better modeling of people scheduling impacts
the Pareto frontier of the optimal NPIs to be imposed.
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