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Short summary

Maintaining a high system performance while imposing virus preventing measures is a challenging
task. We introduce a Deep Epidemic Efficeincy Network (DEEN) which balances the two opposing
goals via graph partition. Our model optimises graph efficiency while meeting increasing levels of
the epidemic threshold. We introduced our method to the ride-pooling service in New York City.
By dividing 150 New York taxi travellers into four groups, our method increases the epidemic
threshold by more than twofold at the cost of reducing utility only by 13%. We validate our model
against other real-world examples: cross-region economic exchange in Poland and information
sharing in a peer-to-peer network.
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1 Introduction

The recent COVID-19 outbreak had a huge impact on our lives. Required social distancing impeded
trade, production, shared transport capabilities. The situation is naturally represented on a graph
where nodes portray people or economic centres while edges a contact between them. Studies for
ant colonies and classes partitioning were conducted by Chen et al. (2019) and Kaiser et al. (2021),
respectively.
With the increased network connectivity, the utility increases while the epidemic threshold de-
creases. Wu & Liu (2008) analysed the impact of the topological properties on spreading. We can
measure the original network utility (the full potential when no constraints are applied) and utility
in the decomposed network (certain edges are removed to separate the population into pairwise
disjoint components). The challenge addressed by this study is to find the golden mean where
the network maintains close to its original utility while imposing a high epidemic threshold. Our
model is based on Graph Neural Networks introduced by Scarselli et al. (2008) and later further
developed by Shuman et al. (2013), Kipf & Welling (2017) and Bianchi et al. (2020).
Our inspiring example was ride-pooling. As described in seminar papers by Santi et al. (2014)
and Alonso-Mora et al. (2017), first we must find feasible combinations of travellers, which we
later subset for the optimal matching. Our model decomposes the shareability graph (feasible
combinations) without knowledge of how matching is done. It successfully partitions the graph
into balanced components, achieving both a high epidemic threshold and close to the original
performance. We validated the algorithm on two other examples: economic exchange between
regions in Poland and a peer-to-peer computer network, where it delivered similar results.

2 Methodology

We denote G = (V, E) as a weighted directed graph representing the system, A = (Aij) ∈ R|V|×|V|

its adjacency matrix with weights. We define ∆ = (∆ij) ∈ {0, 1}|V|×|V| as

∆ij =

{
1, Aij > 0
0, Aij ≤ 0.

(1)

Decomposition of a graph G can be defined as a subgraph H = (VH , EH), such that VH = V,
EH ⊆ E and H consists of disjointed subgraphs H1,H2, ...,Hk, meaning

⋃
VHi

= VH,
⋃

EHi
= EH

and VHi
∩ VHj

= ∅, for i ̸= j. We denote set of decompositions of graph G as D(G).
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The effectiveness of the system represented by the graph is measured as the utility. It is a non-
decreasing function (H ⊆ G =⇒ U(H) < U(G)). The function can be not analytical and
black-box (calculated with an external algorithm). For the pooling service it is vehicle kilometre
reduction, for economic exchange a complex accessibility formula, for peer-to-peer network as a
share of preserved connections.
We measure the virus spreading via epidemic threshold. We use the Susceptible-Infected-Susceptible
epidemic model (Shi et al., 2008) and apply heterogeneous mean-field approach (Wang et al., 2017).
For a connected graph G we define it as

ET (G) =
∑

v∈V deg(v)∑
v∈V deg(v)2

. (2)

Our method is grounded in decomposition, hence we generalise the epidemic threshold for a dis-
connected graph. Let C(G) = {Gi}i denote set of its connected, pair-wise disjoint components. We
generalise ET (G) as

ET (G) =
∑

Gi∈C(G)

|Vi|
|V|

ET (Gi). (3)

Optimisation problem

Let U be an (unknown) utility function on the weighted graph G. Given a target epidemic threshold
β, we seek a decomposition H ∈ D(G), which maximises the utility U and has an epidemic threshold
ET (G) equal to or greater than β. Finding such decomposition H (clustering) guarantees that virus
transmission will be reduced while the effectiveness of the system network will be maximal. This
optimisation problem can be written as

max
H∈D(G)

U(H),

s.t. ET (H) ≥ β.
(4)

Deep Epidemic Efficiency Network

We introduce the following framework to solve the optimisation problem (6). To account for all
our goals, we define the loss function comprising three elements: utility loss, virus spreading and
regularisation factor (ensure balanced assignments). All three components are described later.
The model is built on Graph Convolutional Neural Networks (GCNN) (Kipf & Welling, 2017) with
the output layer defined by the softmax function. To include feature information about a node in
the propagation process, we modify the weight matrix by adding self-loops, i.e.

Â = A+ δI, (5)

where δ ∈ R+ (Lampert & Scholtes, 2023). The GCNN returns the assignment matrix S ∈ R|V|×K :

S = softmax(GCNN(Â)), (6)

where K ∈ N+ is the resulting number of clusters. Due to the use of weighted edges, we do not
experience training instability and over-smoothing, therefore, unlike Kipf & Welling (2017), we do
not apply Laplacian normalisation.
We build a model for an arbitrary form of the utility function and make use of edge weights to
approximate edge importance in the overall utility. Therefore, the first component of our loss is
the utility loss expressed as

Lu(S;A) =
1

|V|

|V|∑
i=1

|V|∑
j=1

aij(1− sis
T
j ), (7)

where si ∈ RK is the i-th row of S representing cluster assignment of i-th node. This loss forces
cluster assignments of nodes connected with high weight links closer to each other. We intentionally
use a non-specific formula for the utility to ensure that our model is general, the function is both
easily calculated and differentiable. Maximising weighted similarity is highly correlated with many
typical examples of utility functions.
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For a given assignment to clusters, we approximate the node degree as (note that specific edge
weights are not relevant here, only their sign)

di =

|V|∑
j=1

K∑
k=1

∆ij · sik · sjk (8)

and represent degree vector for graph G as

d = diag(∆TSST ). (9)

Then, we define the virus spreading loss for a connected graph as

Lvs(S;A) = −∥d+ e∥1
∥d+ e∥22

. (10)

The additional 1 is added to each vector degree (self-loop with weight 1) to avoid Lvs
d→0−−−→ −∞.

However, since we operate on graphs that are not necessarily connected, we define virus spreading
loss as a weighted sum:

Lvs(S;A) =
∑

(Vi,Ei)∈C(G)

|Vi|
|V|

Lvs(S
(i);A(i)), (11)

where C(G) denotes set of connected components of graph G and Vi, Ei, S(i), A(i) represent a set
of nodes, a set of edges, a cluster assignment matrix and an adjacency matrix for component i,
respectively.
Lastly, we use of collapse regularisation proposed by Tsitsulin et al. (2023) to prevent the trivial
decomposition while not dominating the optimisation of the main objective. It is defined as

Rc(S) =

√
K

|V|

∥∥∥∥∥∑
i

S⊤
i

∥∥∥∥∥
F

− 1, (12)

where ∥·∥F denotes Frobenius norm. Without the collapse regularisation, clustering for our objec-
tives has local minima (creating empty clusters) that trap the gradient-based optimisation.
Taking the above three components together, we arrive at the final expression of our loss function:

LDEEN (S;A) = Lu(S;A) + λLvs(S;A) +Rc(S), (13)

where λ ∈ R+ balances virus spread and connectivity of a graph. We set λ = 0.4 for all of our
experiments to reach the balance between virus spreading and effectiveness that we wanted. Higher
λ pushes model to achieve higher epidemic threshold and lower effectiveness, while lower λ has an
opposite effect. To uncover an optimal number of clusters to solve problem 4, we perform a binary
search and find the minimal number such that it exceeds given epidemic threshold. For each case,
we train the model with the same architecture: 3 non-normalised graph convolutional layers and
1 dense layer. We apply the ReLU activation function, Adam optimiser (with a learning rate of
0.001) and train till convergence (2000 epochs). To ensure that there are no degenerate solutions,
we impose the maximum number of clusters to n

2 in ride-pooling experiment and 32 for the other
two.
We compare our results to other partitioning algorithms: greedy algorithms by Clauset-Newman-
Moore (Clauset et al., 2004) and Girvan-Newman (Girvan & Newman, 2002); spectral clustering;
and other deep networks: MinCutPool (Bianchi et al., 2020), Just balance GNN (Bianchi, 2023)
and Deep Modularity Network (DMoN) (Tsitsulin et al., 2023).

3 Results and discussion

For ride-pooling experiments, we use publicly available dataset of trip requests for Manhattan, New
York1. We conduct the evaluation using 21 batches (8-8:30AM, 4-4:30PM and 12-12:30AM) from
seven consecutive days, ranging from 78 to 204 trip requests. Using ExMAS algorithm (Kucharski
& Cats (2020)), we obtain first the shareability graphs (feasible combinations of travellers) and

1Dataset available at https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

3

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page


Figure 1: Method showcase: The network of 150 travellers in NYC using ride-pooling services (shared taxi
offered by, e.g., UberPool). The nodes are travellers, linked if they can efficiently travel together. Depending
on the desired epidemic threshold, DEENremoves the links marked gray and divides the network into two
(left) or four (right) clusters, which increases the initial epidemic threshold of 0.13 to 0.35 and 0.47 at
the expense of 0.03 and 0.13 of the original saved vehicle distance, respectively. Colours denote resulting
clusters. Inner edges correspond to the potential travellers pairings that are not physically realised while
the outer edges – a subset of the potential pairings that constitutes the optimal solution for ride-pooling.

then measurement of the maximum vehicle kilometre reduction. We decompose shareability graphs
so that travellers assigned to different clusters can no longer share a trip. For the new, smaller set
of feasible combinations, we perform matching (for details refer to ExMAS description) and find
the optimal solution. Then we calculate the new performance value (saved vehicle kilometres).
For shareability graphs, we define edge weights (used in utility loss (7)) as

w(v, u) =
t(v) + t(u)− t(v, u)

t(v) + t(u)
, (14)

where t(v) and t(u) denote individual travel time for passengers v and u, respectively (without
ride-pooling) and t(v, u) represents travel time when passengers share a ride. Note that w(v, u)
can be negative, when taking two passengers increases total travel time.

(a) Utility of graph decomposition measured
in share of the original network utility pre-
served, with different virus spreading objectives
(colours).

(b) Relative cluster sizes represented as lines.
Middle point of each line represents average size
of a cluster (the larger the better). Length of
a line shows standard deviation of sizes (the
smaller the better).

Figure 2: Decomposition results for ride-pooling shareability graphs.

Figure 2a presents what share of the original utility (travel time savings) was preserved after
decomposition needed to achieve given epidemic threshold. The best results are the closest to 1,
i.e. preserving nearly completely the original utility. Figure 2b shows relative sizes of clusters with

4



Epidemic threshold 0.3 0.4 0.5

DEEN 0.37 0.36 0.28
DmoN - - -
Just Balance GNN 0.61 - -
MinCutPool - - -
Clauset-Newman-Moore 0.31 0.29 0.26

Table 1: Share of original utility preserved after decomposition of graph of Polish regions
to reach respective epidemic threshold.

their deviation. Higher average size means that effectively fewer clusters were required to achieve
a certain threshold. Shorter lines indicate all clusters are of a similar size (less degenerated). In
the ride-pooling, if each cluster is to be served separately, it is particularly appreciated if their size
is similar.
To properly evaluate model performance, we look at both figures. We note we decompose graphs
of potential pairings of travellers, from which certain combinations effectively share rides. Greedy
algorithms split graphs into many small subgraphs. They successfully sustain utility while imposing
a high epidemic threshold. However, the large number of clusters indicates they uncover the
most effective rides and put them in single clusters. The solution yields little application if the
service provider aims to arbitrarily cluster potential clients (only a portion of potential clients will
eventually use the service). Spectral clustering techniques create balanced subgraphs, however
they do not preserve utility. Deep Networks balance the number of clusters (greater size) and the
utility better, but overall DEEN achieves best results in terms of both utility and cluster sizes.
Concluding, we recognise our method best as it offers the least numbers of clusters with small
deviation and preserves the highest utility.

Other applications

We validate our method with other real-life examples. During the pandemic outbreak, people
were forced to limit their social contacts and often limit their presence outside homes to absolute
necessities. We study regional lockdown in Poland. Our goal is to maximise the potential economic
exchange while minimising cross-region transmission. In the graph representation of the problem,
nodes are regions and connections indicate immediate neighbourhood. The edge weight is defined
as follows:

w(v, u) =

(
p(v)

2 ·maxw∈N (u) p(w)
+

p(u)

2 ·maxw∈N (v) p(w)

)
. (15)

The maximum term normalises the edge weight over its neighbours and 2 accounts for counting
both ends.
To properly evaluate economic exchange, we apply accessibility formulas (following Levinson
(1998)), which not only consider neighbours but also other reachable nodes:

U(v,Rv) =
∑

u∈Rv/{v}

p(v) · p(u)
d(u, v)

, (16)

where p(u) is the population, d(u, v) denotes distance between centres of regions and Rv denotes
set of regions reachable from region v. Note that although initially, every region is accessible from
any node v, this is not true after graph decomposition. Network’s utility

∑
v U(v,Rv) will be

reduced as our model decomposes regions into the clusters.
Girvan-Newman and spectral clustering baselines were not possible to evaluate due to the number
of nodes and our limited resources. Table 1 shows that only DEEN and Clauset-Newman-More
baseline were able to achieve high epidemic threshold (for maximum number of clusters set to 32
for Deep Network methods).
Moreover, Figure 3 highlights that DEEN creates components that are better balanced in terms
of size. In particular, Clauset-Newman-Moore algorithm creates small set of large dominant com-
ponents and a lot of small ones.
Examples of decompositions made by DEEN are shown in Figure 4.
We validate our method against the peer-to-peer Gnutella network Ripeanu et al. (2002). Edges
represent connection between hosts. Our utility measure is a fraction of preserved connections.
Quantitative results are presented in 2.
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Figure 3: KDE of sizes of components for regional decomposition.

(a) (b)

Figure 4: Decompositions of Polish regions using DEEN. They increase epidemic threshold
from 0.2 (original) to 0.27 (4a) and 0.37 (4b), and decreases utility to 52% and 36%,
respectively. Components with at least 50 nodes are coloured, components with 10-49
nodes are grey and components with less than 10 nodes are faded.

Utility Clusters size (AVG ± SD)
Epidemic threshold 0.4 0.5 0.6 0.4 0.5 0.6

DEEN 0.38 0.28 0.22 0.25± 0.01 0.17± 0.01 0.14± 0.01
DMoN 0.53 0.43 − 0.36± 0.09 0.29± 0.08 −
Just Balance GNN 0.59 0.39 − 0.42± 0.02 0.28± 0.06 −
MinCutPool 0.76 − − 0.47± 0.13 − −
Clauset-Newman-Moore 0.33 0.26 0.22 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 2: Average preserved utility after decomposition of P2P networks and size of obtained
clusters described by average size and standard deviation (% of nodes). Note that 0.00±
0.00 means that the average size of cluster and the standard deviation was smaller than
1% of nodes. Reported numbers are averages over 9 P2P networks.

4 Conclusions

The Deep Epidemic Efficiency Network we introduced effectively decomposes ride-pooling share-
ability graphs. We achieve close to the original saved vehicle mileage (87%) while increasing the
epidemic threshold by 240%. Our model provides an efficient way to limit contacts in shared mobil-
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ity, such that the service performance is hardly hindered and the safety measures are significantly
increased. DEEN is flexible and successfully tackled other real-life problems: maintaining economic
exchange under lockdown and preventing the spread of computer virus. The model proves to be
applicable to graphs of different sizes and topologies. Its tuneable parameters offer the user to
amplify the role of either preserved utility or maximised safety.
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